Меню

Новое сверхмощное взрывчатое вещество синтезируют в американских лабораториях. Понятие и виды взрывчатых веществ Тротил – взрывчатое вещество нормальной мощности

Работа

ВЗРЫВЧАТЫЕ ВЕЩЕСТВА – это вещества или их смеси, способные под влиянием внешнего воздействия (нагревание, удар, трение, взрыв другого вещества) очень быстро разлагаться с выделением газов и большого количества теплоты.

Взрывчатые смеси существовали задолго до появления на Земле человека. Небольшой (1–2 см в длину) оранжево-синий жук-бомбардир Branchynus explodans защищается от нападений весьма остроумным способом. В небольшом мешке в его теле накапливается концентрированный раствор пероксида водорода . В нужный момент этот раствор быстро смешивается с ферментом каталазой. Протекающую при этом реакцию наблюдал каждый, кто обрабатывал порезанный палец аптечным 3%-ным раствором перекиси: раствор буквально вскипает, выделяя пузырьки кислорода. Одновременно смесь нагревается (тепловой эффект реакции 2Н 2 О 2 ® 2Н 2 О + О 2 составляет 190 кДж/моль). У жука одновременно с этой идет еще одна реакция, катализируемая ферментом пероксидазой: окисление гидрохинона пероксидом водорода до бензохинона (тепловой эффект этой реакции – более 200 кДж/моль). Выделяющегося тепла достаточно, чтобы нагреть раствор до 100° С и даже частично испарить его. Реакция у жука идет настолько быстро, что едкая смесь, разогретая до высокой температуры, выстреливается с громким звуком во врага. Если струя, масса которой всего полграмма, попадет на кожу человека, она вызовет небольшой ожог.

«Изобретенный» жуком принцип типичен для взрывчатых веществ химической природы, в которых энергия выделяется за счет образования прочных химических связей. В ядерном оружии энергия выделяется за счет деления или слияния атомных ядер. Взрыв – это очень быстрое выделение энергии в ограниченном объеме. В этом случае происходит мгновенный нагрев и расширение воздуха, начинает распространяться ударная волна, приводящая к большим разрушениям. Если взорвать динамит (без стальной оболочки) на Луне, где нет воздуха, разрушительные последствия будут неизмеримо меньше, чем на Земле. О необходимости же для взрыва очень быстрого выделения энергии свидетельствует такой факт. Хорошо известно, что смесь водорода с хлором взрывается, если ее выставить на прямой солнечный свет или если поднести к колбе горящий магний – об этом написано даже в школьных учебниках, но если свет будет не таким ярким, реакция пройдет совершенно спокойно, в ней выделится та же энергия, но не за сотую долю секунды, а за несколько часов и в результате теплота просто рассеется в окружающем воздухе.

При протекании любой экзотермической реакции выделяющаяся тепловая энергия нагревает не только окружающую среду, но и сами реагенты. Это приводит к увеличению скорости реакции, что, в свою очередь, ускоряет выделение тепла и это еще больше повышает температуру. Если отвод теплоты в окружающее пространство не будет успевать за ее выделением, то в результате реакция может, как говорят химики, «пойти вразнос» – смесь вскипит и выплеснется из реакционного сосуда или даже взорвется, если выделяющиеся газы и пары не найдут быстрого выхода из сосуда. Это – так называемый тепловой взрыв. Поэтому при проведении экзотермических реакций химики тщательно следят за температурой, понижая ее в случае необходимости добавлением в колбу кусочков льда или помещая сосуд в охлаждающую смесь. Особенно важно уметь рассчитывать скорость тепловыделения и теплоотвода для промышленных реакторов.

Очень быстро выделяется энергии в случае детонации. Это слово (оно происходит от латинского detonare – прогреметь) означает химическое превращение взрывчатого вещества, которое сопровождается выделением энергии и распространением волны по веществу со сверхзвуковой скоростью. Химическая реакция возбуждается интенсивной ударной волной, образующей передний фронт детонационной волны. Давление во фронте ударной волны составляет десятки тысяч мегапаскалей (сотни тысяч атмосфер), чем и объясняется огромное разрушающее действие подобных процессов. Энергия, выделяемая в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне. Детонация возникает во многих соединениях и их смесях. Например, тетранитрометан C(NO 2) 4 – тяжелая бесцветная жидкость с резким запахом – перегоняется без взрыва, однако смеси его со многими органическими соединениями детонируют с огромной силой. Так, во время лекции в одном из Германских вузов в 1919 году погибло много студентов из-за взрыва горелки, с помощью которой демонстрировалось горение смеси тетранитрометана с толуолом. Оказалось, что лаборант, готовя смесь, перепутал массовые и объемные доли компонентов и при плотностях реагентов 1,64 и 0,87 г/см3 это вызвало почти двукратное изменение состава смеси, что и привело к трагедии.

Какие же вещества способны взрываться? Прежде всего это так называемые эндотермические соединения, то есть соединения, образование которых из простых веществ сопровождается не выделением, а поглощением энергии. К таким веществам относятся, в частности, ацетилен , озон, оксиды хлора , пероксиды. Так, образование 1 моля С 2 Н 2 из элементов сопровождается затратой 227 кДж. Это означает, что ацетилен должен считаться потенциально нестабильным соединением, так как реакция его распада на простые вещества С 2 Н 2 ® 2С + Н 2 сопровождается выделением очень большой энергии. Именно поэтому, в отличие от многих других газов, ацетилен никогда не закачивают в баллоны под большим давлением – это может привести к взрыву (в баллонах с ацетиленом этот газ растворен в ацетоне, которым пропитан пористый носитель).

Со взрывом разлагаются ацетилениды тяжелых металлов – серебра, меди. Очень опасен по той же причине и чистый озон, при распаде 1 моль которого выделяется 142 кДж энергии. Однако многие потенциально нестабильные соединения на практике могут оказаться довольно устойчивыми. Пример – этилен, причина стабильности которого – очень малая скорость разложения на простые вещества.

Исторически первым взрывчатым веществом, изобретенным людьми, был черный (он же дымный) порох – смесь тонко растертых серы, древесного угля и нитрата калия – калийной селитры (натриевая не годится, так как она гигроскопична, то есть отсыревает на воздухе). Это изобретение за прошедшие века унесло миллионы человеческих жизней. Однако изобрели порох, оказывается, для других целей: древние китайцы более двух тысячелетий назад с помощью пороха устраивали фейерверки. Состав китайского пороха позволял ему гореть, но не взрываться.

Древние греки и римляне не имели селитры, поэтому и пороха у них быть не могло. Приблизительно в 5 в. селитра попала из Индии и Китая в Византию – столицу греческой империи. В Византии открыли, что смесь селитря с горючими веществами горит очень интенсивно и потушить ее невозможно. Почему так происходит, стало известно намного позже – таким смесям не нужен для горения воздух: селитра сама является источником кислорода). Содержащие селитру горючие смеси под названием «греческий огонь» стали использоваться в военном деле. С их помощью в 670 и 718 были сожжены корабли арабского флота, осаждавшего Константинополь. В 10 в. Византия отразила с помощью греческого огня нашествие болгар.

Прошли столетия, и в средневековой Европе порох изобрели заново. Произошло это в 13 в. И кто был изобретателем, неизвестно. По одной из легенд, монах из Фрайбурга Бертольд Шварц растирал в тяжелой металлической ступке смесь серы, древесного угля и селитры. Случайно в ступку упал железный шар. Раздался ужасный грохот, из ступки повалил едкий дым, а в потолке образовалась дыра – ее пробил шар, вылетевший с огромной скоростью из ступки. Стало понятным, какая огромная сила таится в черном порошке (само слово «порох» произошло от древнерусского «прах» – пыль, порошок). В 1242 порох описал английский философ и естествоиспытатель Роджер Бэкон . Порох стали использовать в военном деле. В 1300 была отлита первая пушка, вскоре появились и первые ружья. Первый пороховой завод в Европе был построен в Баварии в 1340. В 14 в. огнестрельное оружие начали применять и на Руси: с его помощью москвичи в 1382 обороняли свой город от войск татарского хана Тохтамыша.

Изобретение пороха оказало огромное влияние на мировую историю. С помощью огнестрельного оружия были завоеваны моря и континенты, разрушены цивилизации, уничтожены или покорены целые народы. Но были у открытия пороха и положительные моменты. Облегчилась охота на диких зверей. В 1627 в Банска-Штьявице на территории современной Словакии порох впервые использовали в горном деле – для разрушения породы в шахте. Благодаря пороху появилась специальная наука о расчете движения ядер – баллистика. Стали совершенствоваться методы литья металлов для пушек, изобретались и испытывались новые прочные сплавы. Разрабатывались также новые способы получения пороха – и прежде всего селитры

Во всем мире росло число пороховых заводов. На них изготовляли многие сорта черного пороха – для мин, пушек, ружей, в том числе и охотничьих. Исследования показали, что порох обладает способностью очень быстро сгорать. Горение наиболее распространенного порохового состава приблизительно описывается уравнением 2KNO 3 + S + 3C ® K 2 S + 3CO 2 + N 2 (помимо сульфида образуется также сульфат калия K 2 SO 4). Конкретный состав продуктов зависит от давления при горении. Д.И.Менделеев , изучавший этот вопрос, указывал на существенное различие в составе твердого остатка при холостом и боевом выстрелах.

В любом случае при горении пороха выделяется большое количество газов. Если порох насыпать на землю и поджечь, он не взорвется, а просто быстро сгорит, но если он горит в замкнутом пространстве, например, в патроне ружья, то выделяющиеся газы с силой выталкивают пулю из патрона, и она с большой скоростью вылетает из дула. В 1893 на всемирной выставке в Чикаго немецкий промышленник Крупп показал орудие, которое заряжалось 115 кг черного пороха, его снаряд массой 115 кг в течение 71 секунды пролетал более 20 км, достигая в высшей точке высоты 6,5 км

Частички твердых веществ, образующиеся при горении черного пороха, создают черный дым, поля сражений иногда так окутывало дымом, что он застилал солнечный свет (в романе Война и мир описано, как дым затруднял командирам управлять ходом сражений). Твердые частички, образующиеся при горении черного пороха, загрязняют канал огнестрельного оружия, поэтому дуло ружья или пушки нужно было регулярно чистить.

К концу 19 в. черный порох практически исчерпал свои возможности. Химикам было известно множество взрывчатых веществ, но для стрельбы они не годились: их дробящая (бризантная) сила была такова, что ствол разлетелся бы на куски еще до вылета из него снаряда или пули. Таким свойством обладают, например, азид свинца Pb(N 3) 2 , гремучая ртуть Hg(CNO) 2 – соль гремучей (фульминовой) кислоты. Эти вещества легко взрываются при трении и ударе, они используются для снаряжения капсюлей и служат для воспламенения пороха.

В 1884 французский инженер Поль Вьель изобрел новый вид пороха – пироксилиновый. Пироксилин был получен еще в 1846 при нитровании целлюлозы (клетчатки), но долго не могли выработать технологию получения стойкого и безопасного в обращении пороха. Вьель, растворив пироксилин в смеси спирта и эфира, получил тестообразную массу, которая после прессования и сушки дала прекрасный порох. Зажженный на воздухе, он спокойно сгорал, а в патроне или гильзе снаряда взрывался с большой силой от детонатора. По мощности новый порох намного превосходил черный, а при горении не давал дыма, поэтому его назвали бездымным. Этот порох позволил уменьшить калибр (внутренний диаметр) ружей и пистолетов и таким образом повысить не только дальность, но и точность стрельбы. В 1889 появился еще более мощный бездымный порох – нитроглицериновый. Много сделал для усовершенствования бездымного пороха великий русский химик Д.И.Менделеев. Вот что он сам писал об этом:

«Черный дымный порох нашли китайцы и монахи – чуть не случайно, ощупью, механическим смешением, в научной темноте. Бездымный порох открыт при полном свете современных химических познаний. Он составит новую эпоху военного дела не потому, что не дает дыму, глаза застилающего, а потому преимущественно, что при меньшем весе дает возможность сообщать пулям и всяким иным снарядам скорости в 600, 800 и даже 1000 метров в секунду, и в то же время представляет все задатки дальнейшего усовершенствования – при помощи научного исследования невидимых явлений, при его горении совершающихся. Бездымный порох составляет новое звено между могуществом стран и научным их развитием. По этой причине, принадлежа к числу ратников русской науки, я на склоне лет и сил не осмелился отказаться от разбора задач бездымного пороха.»

Созданный Менделеевым порох в 1893 успешно прошел испытания: им стреляли из 12-дюймового орудия, и инспектор морской артиллерии адмирал Макаров поздравил ученого с блестящей победой. С помощью бездымного пороха дальность стрельбы была значительно увеличена. Из огромной пушки «Большая Берта» массой 750 тонн немцы обстреливали Париж с расстояния 128 км. Начальная скорость снаряда составляла 2 км/с, а высшая его точка находилась далеко в стратосфере на высоте 40 км. В течение лета 1918 по Парижу было выпущено свыше 300 снарядов, но, конечно, эта стрельба имела только психологическое значение, так как ни о какой точности говорить не приходилось.

Бездымный порох используют не только в огнестрельном оружии, но и в ракетных двигателях (твердое ракетное топливо). В годы Второй мировой войны наша армия успешно применяла реактивные снаряды на твердом топливе – ими стреляли легендарные гвардейские минометы «катюши».

Похожая судьба была и у продукта нитрования фенола – тринитрофенола (пикриновой кислоты). Он был получен еще в 1771 и использовался в качестве желтого красителя. И только в конце 19 в. его стали использовать для снаряжения гранат, мин, снарядов под названием лиддита. Колоссальная разрушительная сила этого вещества, применявшегося в англо-бурской войне, ярко описана Луи Буссенаром в приключенческом романе Капитан Сорви-Голова . А с 1902 для тех же целей стали использовать более безопасный тринитротолуол (тротил, тол). Тол широко используется при взрывных работах в промышленности в виде литых (или прессованных) шашек, поскольку это вещество можно без опасений плавить, нагревая выше 80° С.

Сильнейшими взрывчатыми свойствами обладает очень опасный в обращении нитроглицерин. В 1866 его удалось «приручить» Альфреду Нобелю , который, смешав нитроглицерин с негорючим материалом, получил динамит. Динамитом пользовались для прорытия туннелей, при многих других горных работах. В первый же год его применение при постройке туннелей в Пруссии позволило сэкономить 12 миллионов золотых марок.

Современные взрывчатые вещества должны удовлетворять многим условиям: безопасность в производстве и обращении, выделение большого объема газов, экономичность. Самая дешевая взрывчатка – смесь нитрата аммония с дизельным топливом, ее производство составляет 80% всех взрывчатых веществ. А какое из них самое мощное? Это зависит от критерия мощности. С одной стороны, важна скорость детонации, т.е. скорость распространения волны. С другой – плотность вещества, т.к. чем она выше, тем больше энергии при прочих равных условиях высвобождается в единице объема. Так, для мощнейших нитросоединений оба параметра за 100 с лишним лет были улучшены на 20–25%, что видно из следующей таблицы:

Гексоген (1,3,5-тринитро-1,3,5-триазациклогексан, циклонит), который в последние годы приобрел печальную известность, с добавками парафина или воска, а также в смеси с другими веществами (тротилом, нитратом аммония, алюминием) начали применять в 1940. Он используется для снаряжения боеприпасов, а также входит в состав аммонитов, применяемых при скальных работах.

Наиболее мощная взрывчатка, производящаяся (с 1955) в промышленном масштабе, – октоген (1,3,5,7-тетранитро-1,3,5,7-тетраазоциклооктан). Октоген довольно устойчив к нагреву, поэтому его используют при взрывных работах в высокотемпературных условиях, например, в глубоких скважинах. Смесь октогена с тротилом (октол) – компонент твердых ракетных топлив. Абсолютный же рекорд держит синтезированный в США в 1990 гексанитроизовюрцитан. Ударная волна при его взрыве распространяется в 30 раз быстрее звука

Илья Леенсон

Каждое новое поколение пытается перещеголять поколения предыдущие в том, что называется начинкой для адских машинок и другого , другими словами – в поисках мощного взрывчатого вещества. Казалось бы, эпоха взрывчатки в виде пороха понемногу уходит в , однако поиски новых взрывчатых веществ не прекращаются. Чем меньше масса взрывчатого вещества, и чем больше его поражающая сила, тем лучшим оно представляется военным специалистам. Активизировать поиски такого взрывчатого вещества диктует робототехника, а также использование небольших ракет и бомб большой поражающей силы на БПЛА.

Естественно, что идеальное с военной точки зрения вещество вряд ли вообще будет когда либо обнаружено, но вот недавние разработки говорят о том, что нечто близкое к такому понятию получить всё же можно. Под близостью к идеальности здесь понимается стабильное хранение, высокая поражающая сила, небольшой объем и легкая транспортировка. Не нужно забывать, что цена такого взрывчатого вещества тоже должна быть приемлемой, иначе создание на его основе оружия может просто опустошить военный бюджет той или иной страны.

Разработки уже долгое время идут вокруг использования химических формул таких веществ, как тринитротолуол, пентрит, гексоген и ряд других. Однако в полной мере новинок «взрывная» наука предложить может крайне редко.
Именно поэтому появление такого вещества как гексантирогексаазаизовюрцитан (название – язык сломаешь) можно считать настоящим прорывом в своей области. Чтобы не ломать язык, ученые решили дать этому веществу более удобоваримое название – CL-20.
Это вещество впервые было получено еще около 26 лет назад – в далеком уже 1986 году в американском штате Калифорния. Его особенность заключается в том, что плотность энергии в этом веществе пока максимальная в сравнении с другими веществами. Высокая энергетическая плотность CL-20 и малая конкуренция при его производстве приводят к тому, что стоимость такой взрывчатки сегодня просто астрономическая. Один килограмм CL-20 стоит около 1300 долларов. Естественно, что такая цена не позволяет использовать взрывчатый агент в промышленных масштабах. Однако уже вскоре, считают эксперты, цена этой взрывчатки может существенно упасть, так как есть варианты по альтернативному синтезу гексантирогексаазаизовюрцитана.

Если сравнивать гексантирогексаазаизовюрцитан с самым эффективным на сегодняшний день взрывчатым веществом, применяемым в военных целях (октогеном), то стоимость последнего составляет около ста долларов за кг. Однако именно гексантирогексаазаизовюрцитан проявляет большую эффективность. Скорость детонации CL-20 составляет 9660 м/с, что на 560 м/с больше, чем у октогена. Плотность CL-20 также выше, чем у того же октогена, а значит, и с перспективами у гексантирогексаазаизовюрцитана тоже должно быть всё в порядке.

Одним из возможных направлений в применении CL-20 сегодня считают беспилотники. Однако здесь есть проблема, потому что CL-20 очень чувствителен к механическим воздействиям. Даже обычная тряска, которая вполне может произойти с БПЛА в воздухе способна вызвать детонацию вещества. Чтобы избежать взрыва самого беспилотника специалисты предложили использовать CL-20 в интеграции с пластиковым компонентом, который будет снижать уровень механического воздействия. Но как только такие эксперименты провели, оказалось, что гексантирогексаазаизовюрцитан (формула С6Н6N12О12) сильно теряет свои «убойные» свойства.

Получается, что перспективы у этого вещества огромные, но вот за два с половиной десятилетия им так никто и не сумел разумно распорядиться. Но эксперименты продолжаются и сегодня. Американец Адам Матцгер работает над совершенствованием CL-20, пытаясь изменить форму этой материи.

Матцгер решил использовать кристаллизацию из общего раствора для получения молекулярных кристаллов вещества. В итоге у них вышел вариант, когда на 2 молекулы CL-20 приходится 1 молекула октогена. Скорость детонации этой смеси находится между скоростями двух указанных веществ по отдельности, но при этом новое вещество гораздо стабильнее самого CL-20 и эффективнее октогена.

Чем ни самая эффективная взрывчатка в мире?..

Терминология

Сложность и разнообразие химии и технологии ВВ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Промышленное применение

ВВ широко используются и в промышленности для производства различных взрывных работ . Ежегодный расход ВВ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн. В военное время расход ВВ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование ВВ в США в 1990-х годах составляло около 2 миллионов тонн.

  • метательные
    Метательные ВВ (пороха и ракетные топлива) служат источниками энергии для метания тел (снарядов, мин, пуль и т. д.) или движения ракет. Их отличительная особенность - способность к взрывчатому превращению в форме быстрого сгорания, но без детонации.
  • пиротехнические
    Пиротехнические составы применяются для получения пиротехнических эффектов (светового, дымового, зажигательного, звукового и т. д.). Основной вид взрывчатых превращений пиротехнических составов - горение.

Метательные ВВ (пороха) применяются в основном в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (торпеде, пуле и т.д.) определенной начальной скорости. Преимущественным видом химического превращения их является быстрое сгорание, вызываемое лучом огня от средств воспламенения. Пороха делятся на две группы:

а) дымные;

б) бездымные.

Представителями первой группы могут служить черные пороха, представляющие собой смесь селитры, серы и угля, например артиллерийский и ружейный пороха, состоящие из 75% калиевой селитры, 10% серы и 15% угля. Температура вспышки дымных порохов равна 290 - 310° С.

Ко второй группе относятся пироксилиновые, нитроглицериновые, дигликолевые и другие пороха. Температура вспышки бездымных порохов равна 180 - 210° С.

Пиротехнические составы (зажигательные, осветительные, сигнальные и трассирующие), применяемые для снаряжения специальных боеприпасов, представляют собой механические смеси из окислителей и горючих веществ. При обычных условиях применения они, сгорая, дают соответствующий пиротехнический эффект (зажигательный, осветительный и т. д.). Многие из этих составов обладают также и взрывчатыми свойствами и при определенных условиях могут детонировать.

По методу приготовления зарядов

  • прессованные
  • литые (взрывчатые сплавы)
  • патронированные

По направлениям применения

  • военные
  • промышленные
  • для горного дела (добыча полезных ископаемых, производство стройматериалов, вскрышные работы)
    Промышленные ВВ для горных работ по условиям безопасного применения подразделяют на
  • непредохранительные
  • предохранительные
  • для строительства (плотин, каналов, котлованов, дорожных выемок и насыпей)
  • для сейсморазведки
  • для разрушения строительных конструкций
  • для обработки материалов (сварка взрывом, упрочнение взрывом, резание взрывом)
  • специального назначения (например, средства расстыковки космических аппаратов)
  • антисоциального применения (терроризм , хулиганство), при этом часто используются низкокачественные вещества и смеси кустарного изготовления.
  • опытно-экспериментальные.

По степени опасности

Существуют различные системы классификации ВВ по степени опасности. Наиболее известны:

  • Согласованная на глобальном уровне система классификации опасности и маркировки химической
  • Классификация по степени опасности в горных работах;

Сама по себе энергия взрывчатого вещества невелика. При взрыве 1 кг тротила выделяется в 6-8 раз меньше энергии, чем при сгорании 1 кг угля, но эта энергия при взрыве выделяется в десятки миллионов раз быстрее, чем при обычных процессах горения. Кроме того, уголь не содержит окислителя.

См. также

Литература

  1. Советская военная энциклопедия. М., 1978.
  2. Поздняков З. Г., Росси Б. Д. Справочник по промышленным взрывчатым веществам и средствам взрывания. - М.: «Недра», 1977. - 253 c.
  3. Fedoroff, Basil T. et al Enciclopedia of Explosives and Related Items, vol.1-7. - Dover, New Jersey: Picatinny Arsenal, 1960-1975.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Смотреть что такое "Взрывчатые вещества" в других словарях:

    - (a. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) хим. соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) саморас пространяющемуся хим. превращению c выделением тепла … Геологическая энциклопедия

    - (Explosive matter) вещества, которые способны дать явление взрыва в силу химического превращения их в газы или пары. В. В. делятся на метательные пороха, бризантные оказывающие дробящее действие и инициирующие для воспламенения и детонации других … Морской словарь

    ВЗРЫВЧАТЫЕ ВЕЩЕСТВА, вещество, которое быстро и резко реагирует на определенные условия, с выделением тепловых, световых, звуковых и ударных волн. Химические взрывчатые вещества по большей части представляют собой соединения с высоким содержанием … Научно-технический энциклопедический словарь

С тех пор как изобрели порох не прекращается мировая гонка за самую мощную взрывчатку. Актуально это и сегодня, несмотря на появление ядерного оружия.

Гексоген – взрывоопасное лекарство

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Октоген - полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

В реальности всё закончилось грустно и анекдотично. Полученные окопы источали такой отвратительный запах, что американские солдаты стремились их покинуть любой ценой, невзирая на приказы и опасность для жизни. Те же, кто оставался, теряли сознание. Неиспользованные комплекты военнослужащие за свой счет отправили назад – в офис фирмы EXCOA.

Взрывчатка, которая убивает своих

Наряду гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько – та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью.

Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

Китайский разрушитель

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» - один её килограмм заменял двадцать два килограмма тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» - динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

Мечта пироманов – CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение – отсутствие промышленных технологий.

С тех пор как изобрели порох, не прекращается мировая гонка за самую мощную взрывчатку. Актуально это и сегодня, несмотря на появление ядерного оружия.

1) Гексоген – взрывоопасное лекарство

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентовал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила. Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы. 10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности. Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13–18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

2) Октоген – полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октол». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила. Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах. В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

3) Астролит – хорош, но дурно пахнет

4) Тетранитропентаэритрит - взрывчатка, которая убивает своих

Наряду с гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько – та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью. Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

5) Китайский разрушитель

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» – один её килограмм заменял двадцать два килограмма тротила. Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74. В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» – динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

6) Мечта пироманов – CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20 кг тротила. Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского». В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение – отсутствие промышленных технологий.