Меню

Метод трех линий в атомно эмиссионной спектроскопии. Химия: Атомно-эмиссионный спектральный анализ, Контрольная работа. Атомно-эмиссионный спектральный анализ

Педсовет

Атомно-эмиссионная спектроскопия

Основы метода

Метод атомно-эмиссионной спектроскопии (АЭС) основан на термическом возбуждении свободных атомов или одноатомных ионов и регистрации оптического спектра испускания возбужденных атомов (см. рис. 1.1, а). Аналитическим сигналом в АЭС служит интенсивность испускаемого излучения I. Поскольку возбуждение атомов имеет термическую природу, возбужденные и невозбужденные атомы находятся между собой в термодинамическом равновесии, положение которого описывается законом распределения Больцмана

где No - число невозбужденных атомов; g* и go - статистические веса возбужденного и невозбужденного состояния; Е - энергия возбуждения; k - постоянная Больцмана; Т - абсолютная температура. Таким образом, при постоянной температуре число возбужденных частиц N* прямо пропорционально числу невозбужденных частиц No , т. е. фактически общему числу данных атомов N в атомизаторе. В свою очередь (при заданных условиях атомизации, определяемых конструкцией и режимом работы прибора и рядом других факторов), число атомов (N) в атомизаторе пропорционально концентрации определяемого элемента в пробе С. Таким образом, можно было бы ожидать, что между интенсивностью испускаемого излучения I и концентрацией определяемого элемента С наблюдается прямо пропорциональная зависимость. Однако на практике условия, обеспечивающие эту зависимость, выполняются далеко не всегда. В общем случае зависимость интенсивности излучения от концентрации нелинейна и может быть описана эмпирическим уравнением

Уравнение (1.2) называется уравнением Ломакина-Шайбе. Оно является основным количественным соотношением атомно-эмиссионного анализа.

Коэффициент а в уравнении (1.2) является сугубо эмпирической величиной, зависящей от условий процесса. Поэтому в АЭС решающее значение имеет правильный выбор условий атомизации и измерения аналитического сигнала, включая градуировку по образцам сравнения.

Атомизаторы

Основные типы источников атомизации и возбуждения, применяемых в АЭС, приведены в табл. 2.

Таблица 2. Основные типы атомизаторов в АЭС

Важнейшей характеристикой любого атомизатора является его температура атомизации. От нее зависит физико-химическое состояние анализируемого вещества, величина аналитического сигнала и метрологические характеристики методики. Как видно из табл. 2, атомизаторы, используемые в АЭС, значительно различаются по своей температуре.

Пламя. Вариант АЭС с атомизацией в пламени называют методом эмиссионной фотометрии пламени. Конструктивно пламенный атомизатор для АЭС представляет собой горелку (рис. 1.2).

Анализируемую пробу (раствор) распыляют с помощью форсунки в пламя. Пламя состоит из двух основных зон: восстановительной и окислительной. В восстановительной зоне протекают первичные реакции термической диссоциации и неполного сгорания компонентов горючей смеси. Эта зона, а также внутренний конус, находящийся между восстановительной зоной и окислительной, интенсивно излучают свет почти во всем УФ-видимом диапазоне. Это излучение накладывается на линии испускания возбужденных атомов и поэтому восстановительную зону пламени для аналитических целей не используют. В окислительной зоне пламени происходят реакции полного сгорания компонентов смеси с образованием Н2O и CO2. Эта зона интенсивно излучает в ИК-области и мало в УФ- и видимой областях, поэтому ее используют для аналитических целей. Температуру, состав и окислительно-восстановительные свойства пламени можно регулировать, варьируя соотношением горючего газа и окислителя в смеси. Этот прием часто используют для выбора оптимальных условий атомизации и устранения физико-химических помех.


В зависимости от состава горючей смеси температура пламени может составлять от 1500 (светильный газ - воздух) до 3000 °С (С2Н2 - N20). Эти температуры оптимальны для определения лишь наиболее легко атомизируемых и возбудимых элементов, в первую очередь щелочных и щелочно-земельных (Са, Sг, Ва) металлов. Для них метод фотометрии пламени является одним из самых чувствительных (пределы обнаружения до 10-7 % масс.). Для большинства других элементов пределы обнаружения на несколько порядков выше. Важное достоинство пламени как источника атомизации - высокая стабильность и связанная с ней хорошая воспроизводимость результатов измерений (Sг= 0,0 1 - 0,05).

Электрическая дуга. В АЭС используют дуговые разряды постоянного и переменного тока. Дуговой атомизатор представляет собой пару электродов (чаще всего угольных), между которыми пропускают электрический разряд. Нижний электрод имеет углубление, в которое помещают пробу. Дуговой разряд наиболее удобен для анализа твердых проб. Для анализа растворов пробу выпаривают вместе с инертным порошкообразным материалом (коллектором), а затем помещают в углубление электрода. Если анализируемая проба - металл (сплав), то она служит нижним электродом.

Температура дугового разряда существенно выше: 3000 - 7000 °С. Таких температур вполне достаточно для эффективной атомизации и возбуждения большинства элементов (кроме галогенов). Поэтому для большинства элементов пределы обнаружения в дуговом разряде в среднем составляют 10-4 - 10-2 % масс. Для дуги переменного тока температура несколько выше, чем для дуги постоянного тока. Дуговые атомизаторы (особенно постоянного тока) не отличаются высокой стабильностью режима работы. Поэтому воспроизводимость результатов невелика: Sг = 0,1 - 0,2. Однако для полуколичественных определений такая воспроизводимость вполне достаточна. Одна из наиболее важных областей применения дуговых атомизаторов - это качественный анализ на основе обзорного спектра.

Электрическая искра. Искровой атомизатор устроен так же, как и дуговой. В спектральных приборах для генерации дугового и искрового разрядов используют одно и то же устройство, а выбор типа разряда осуществляется переключением электрической схемы. Искровой атомизатор предназначен для анализа твердых образцов (иногда вводят жидкие пробы в виде аэрозоля в разрядный промежуток между электродами). Особенность искрового атомизатора - отсутствие термодинамического равновесия между находящимися в нем частицами. Поэтому говорить о температуре искрового разряда достаточно сложно. Его эффективная температура достигает около 10000 °С. Этого достаточно для возбуждения даже наиболее трудновозбудимых галогенов. Искровой разряд стабильнее дугового, и воспроизводимость результатов выше (Sг = 0,05 - 0,1).

Индуктивно связанная плазма. Это самый современный источник атомизации, обладающий наилучшими аналитическими возможностями и метрологическими характеристиками. Атомизатор с ИСП представляет собой плазменную горелку особой конструкции (рис. 1.4), состоящую из трех концентрических кварцевых трубок. В них с большой скоростью подают потоки особо чистого аргона. Самый внутренний поток служит для впрыскивания раствора пробы, средний является плазмообразующим, а внешний служит для охлаждения плазмы; расход аргона в этом потоке особенно велик (1-20 л/мин).

Аргоновая плазма инициируется (поджигается) искровым разрядом, а затем стабилизируется с помощью высокочастотной индуктивной катушки, окружающей верхнюю часть горелки. При этом возникает сильный кольцевой ток заряженных частиц, находящихся в плазме. Температура аргоновой плазмы изменяется по высоте горелки и составляет 60 - 10000 °С.

Метод ИСП-АЭС характеризуется универсальностью (при столь высоких температурах возбуждается большинство элементов), высокой чувствительностью (Cмin = 1 0-8 - 1 0-2 % масс.), хорошей воспроизводимостью (Sг = 0,01 - 0,05) и широким диапазоном определяемых концентраций. Основной фактор, сдерживающий применение ИСП в аналитической практике - высокая стоимость оборудования и расходуемых материалов (аргона высокой чистоты).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Эмиссионный спектральный анализ и пламенная эмиссионная спектроскопия

Эмиссионный спектральный анализ. Основные законы и формулы

Эмиссионный спектральный анализ основан на получении и изучении спектров испускания (эмиссионных спектров). По положению и относительной интенсивности отдельных линий в этих спектрах проводят качественный спектральный анализ. Сравнивая интенсивность специально выбранных спектральных линий в спектре пробы с интенсивностью тех же линий в спектрах эталонов, определяют содержание элемента, выполняя, таким образом, количественный спектральный анализ.

Качественный спектральный анализ основан на индивидуальности эмиссионных спектров каждого элемента и сводится, как правило, к определению длин волн линий в спектре и установлению принадлежности этих линий тому или иному элементу. Расшифровка спектров осуществляется либо на стилоскопе (визуально), либо, чаще всего, на спектропроекторе или микроскопе после фотографирования спектров на фотопластинку.

Количественный спектральный анализ основан на том, что интенсивность спектральных линий элемента зависит от концентрации этого элемента в пробе. Зависимость интенсивности спектральной линии от концентрации имеет сложный характер. В некотором интервале концентраций при постоянстве условий возбуждения эта зависимость выражается эмпирическим уравнением Б.Б. Ломакина:

где I - интенсивность спектральной линии; а - постоянная, объединяющая свойства линии (искровая, дуговая линия, узкая, широкая), условия возбуждения (скорость испарения, скорость диффузии) и другие факторы; с - концентрация элемента в пробе; b - коэффициент самопоглощения.

Наиболее широко распространенными приборами в эмиссионном спектральном анализе являются кварцевые спектрографы ИСП различных модификаций. В приборах для визуального спектрального анализа - стилоскопы и стилометры. В фотоэлектрических методах используют квантометры различных модификаций.

Пламенная эмиссионная спектроскопия

Основные законы и формулы

Появление специализированных пламенных эмиссионных спектрометров привело к обособлению методов фотометрии пламени и придало ему известную самостоятельность.

Как и любой другой прибор эмиссионной спектроскопии, фотометр для фотометрии пламени имеет источник возбуждения (пламенная горелка), диспергирующий элемент (обычно светофильтр) и приемник света - рецептор (обычно фотоэлемент). В спектрофотометрах для пламени вместо светофильтров применяют призмы и дифракционные решетки. Анализируемый раствор вводится в пламя горелки в виде аэрозоля. При этом растворитель испаряется, а соли металла диссоциируют на атомы, которые при определенной температуре возбуждаются. Возбужденные атомы, переходя в нормальное состояние, излучают свет характерной частоты, который выделяется с помощью светофильтров, а его интенсивность измеряется фотоэлементом.

Количественные определения проводят методом калибровочного графика и методом добавок по формуле:

эмиссионный спектр анализ пламенный

сх = сдоб Ix / (Iх+доб - Iх),

где сх - концентрация определяемого элемента; Ix и Iх+доб - показания прибора при фотометрировании исследуемого раствора без добавок и с добавкой стандартного раствора определяемого элемента.

Методами эмиссионного спектрального анализа выполняется значительная часть анализов в металлургической промышленности. Анализируется исходное сырье и готовая продукция. Существенную роль этот метод играет для анализа природных и сточных вод, почвы, атмосферы и других объектов окружающей среды, а также в медицине, биологии и т.д.

Средний предел обнаружения методами эмиссионной спектроскопии составляет от 10-3...10-4% до 10-5%. Погрешность определения характеризуется в среднем величиной 1-2%.

Атомно-абсорбционный анализ

Основные законы и формулы

Физическую основу атомно-абсорбционной спектроскопии составляет поглощение резонансной частоты атомами в газовой фазе. Если на невозбужденные атомы направить излучение света с резонансной частотой поглощения атомов, то излучение будет поглощаться атомами, а его интенсивность уменьшится. И таким образом, если в эмиссионной спектроскопии концентрация вещества связывалась с интенсивностью излучения, которое было прямо пропорционально числу возбужденных атомов, то в атомно-абсорбционной спектроскопии аналитический сигнал (уменьшение интенсивности излучения) связан с количеством невозбужденных атомов.

Число атомов в возбужденном состоянии не превышает 1-2% от общего числа атомов определяемого элемента в пробе, поэтому аналитический сигнал в атомно-абсорбционной спектроскопии оказывается связанным с существенно большим числом атомов, чем в эмиссионной спектроскопии, и, следовательно, в меньшей степени подвержен влиянию случайных колебаний при работе атомно-абсорбционного спектрофотометра.

Уменьшение интенсивности резонансного излучения в условиях атомно-абсорбционной спектроскопии подчиняется экспоненциальному закону убывания интенсивности в зависимости от длины оптического пути и концентрации вещества, аналогичному закону Бугера-Ламберта-Бера.

Если I0 - интенсивность падающего монохроматического света, а I - интенсивность этого света, прошедшего через пламя, то величину lg(I0/I) можно назвать оптической плотностью. Концентрационная зависимость оптической плотности выражается уравнением

lg (I0/I) = А = k l c ,

где k - коэффициент поглощения; l - толщина светопоглощаюшего слоя (пламени); с - концентрация.

В практике атомно-абсорбционного анализа для количественных определений обычно применяют метод градуировочного графика и метод добавок.

Комплектные приборы для атомно-абсорбционной спектроскопии выпускаются во многих странах.

Методы атомно-абсорбционной спектроскопии могут быть использованы или используются в анализе практически любого технического или природного объекта, особенно там, где необходимо определить небольшие содержания элементов. Методики атомно-абсорбционного определения разработаны более чем для 70 элементов периодической системы Д.И. Менделеева.

Предел обнаружения с помощью атомно-абсорбционного анализа для многих элементов характеризуется величиной порядка 10-5...10-6%. Погрешность определения обычно составляет примерно 5% и в зависимости от различных условий изменяется в пределах от 3 до 10%.

Метод имеет также ряд ограничений. Атомно-абсорбционным методом не определяются элементы, резонансные линии которых лежат в далеком ультрафиолете (углерод, фосфор, галогены и др.).

Размещено на Allbest.ru

Подобные документы

    Атомный и молекулярный спектральный анализ. Оптическая спектроскопия. Лазерное сканирование полупроводниковых пластин с последующим спектральным анализом люминесцентного излучения. Спектральные приборы и их принципиальная схема. Дифракционная решётка.

    реферат , добавлен 15.01.2009

    Характеристика и свойства теплового, люминесцентного и электро- и катодолюминесцентного излучений. Метод исследования химического состава различных веществ по их линейчатым спектрам испускания или поглощения (спектральный анализ). Основные виды спектров.

    презентация , добавлен 21.05.2014

    Исследование спектров поглощения электромагнитного излучения молекулами различных веществ. Основные законы светопоглощения. Изучение методов молекулярного анализа: колориметрии, фотоколориметрии и спектрофотомерии. Колориметрическое определение нитрита.

    курсовая работа , добавлен 01.06.2015

    Изучение спектров пропускания резонансных нейтронов проб урана различного обогащения. Устройство и принцип работы времяпролетного спектрометра на основе ускорителя электронов. Контроль изотопного состава урана путем нейтронного спектрального анализа.

    дипломная работа , добавлен 16.07.2015

    Явление кругового дихроизма. Методы анализа спектров кругового дихроизма белков. Инфракрасные спектры поглощения белков. Поглощение белков в ИК-области. Методы анализа ИК-спектров белков. Работа с пакетом программ STRUC по анализу ИК-спектров белков.

    методичка , добавлен 13.12.2010

    Эффект Шпольского. Методы количественного анализа Факторы, влияющие на точность спектрального анализа. Физические процессы, обусловленные двухквантовыми реакциями. Спектрофлуориметрическая установка для спектральных и кинетических измерений.

    курсовая работа , добавлен 06.04.2007

    Характеристика спектрального метода анализа сигналов, при помощи которого можно оценить спектральный состав сигнала, а также количественно выяснить его энергетические показатели. Корреляционный анализ сигнала для оценки прохождения сигнала через эфир.

    курсовая работа , добавлен 17.07.2010

    Метрологические характеристики и аналитические возможности атомно-абсорбционного метода. Способы монохроматизации и регистрации спектров. Индикаторные, мембранные и металлические электроды. Рентгеновская, атомно-флуоресцентная, электронная спектроскопия.

    Обзор оптических схем спектрометров. Характеристики многоканального спектрометра. Описание методики и установки исследования характеристик вогнутых дифракционных решёток. Измерение квантовой эффективности многоэлементного твёрдотельного детектора.

    дипломная работа , добавлен 18.03.2012

    Расчет энергии иона. Количественная интерпретация данных о рассеянии быстрых ионов. Метод спектроскопии обратно рассеянных ионов низких энергий. Форма энергетических спектров двухкомпонентных материалов. Спектр кремния с анатомами на поверхности.

Оптические атомно-спектроскопические методы, основанные на энергетических переходах в атомах, можно разделить на три группы:

атомно-эмиссионные; атомно-абсорбционные; атомно-флуоресцентные.

Метод атомно-эмиссионный спектроскопии (АЭС) основан на испускании (эмиссии) квантов электромагнитного излучения возбужденными атомами. Общую схему атомной эмиссии можно представить следующим образом:

А + Е →А --- А* + hv,

где А - атом элемента;

А*- возбужденный атом;

hv - испускаемый квант света;

Е - энергия, поглощаемая атомом.

Возбуждение атома происходит при столкновении с частицами плазмы, дуги или искры, обладающими высокой кинетической энергией. При поглощении атомом энергии 100-600кДж*моль -1 внешний электрон переходит на один из более высоких энергетических уровней и через – 10 -8 с возвращается на какой-либо нижний уровень. При этом энергия выделяется либо в виде света hv определенной частоты, либо теряется в виде теплоты при столкновениях с другими частицами.

В отличие от молекул атом не имеет колебательных и вращательных подуровней, в нем возможны только электронные переходы. Поскольку разность энергий электронных уровней достаточно велика, атомный спектр состоит из отдельных спектральных линий. Эмиссионный спектр состоит из множества спектральных линий разной интенсивности. Интенсивность линий зависит от количества атомов, в которых осуществляется тот или иной переход. Чем больше вероятен переход, тем больше атомов участвует в нем, тем интенсивнее спектральная линия.

Наиболее вероятны переходы с возбужденного уровня, ближайшего к основному. Спектральные линии, соответствующие такому переходу, называют резонансными. Эти линии обладают наибольшей интенсивностью, и их чаще всего используют при анализе.

В атомной спектроскопии необходимо перевести вещество в атомарное состояние - атомизировать. Атомизацию осуществляют пламенными и электротермическими способами.

Эмиссионная фотометрия пламени. Метод основан на измерении интенсивности излучения, испускаемого атомами и молекулами, возбуждаемыми в пламени. Пламя образуется при сгорании различных органических веществ (водород, пропан, ацетилен и т.д.) в окислителях. Температура пламени не высока (до 3000°С), однако ее достаточно для возбуждения резонансных линий наиболее легковозбудимых атомов - менее 600кДж/моль. Температура отдельных частей пламени зависит от состава горючей смеси. Для целей анализа обычно используют верхнюю часть пламени, где собственное излучение пламени, обусловленное продуктами сгорания -фон, наименьшее.

1830 1800 1700 1750 конус 2000 1200 3000

1600 Внутренний Промежуточная 1000 300

Конус зона

Рис. 8. Температура (°С) в пламени «ацетилен с кислородом»

Исследуемое вещество обычно вводят в пламя в виде растворов (распыляют); для качественного анализа можно внести в пламя и твердую пробу*. При этом в пламени протекает ряд процессов: испарение растворителя с образованием твердых частиц вещества, испарение твердых частиц с образованием атомного пара, диссоциация молекул на атомы, частичная ионизация, возбуждение атомов, возвращение атомов в исходное состояние с выделением квантов света.

Интенсивность излучения атомами (молекулами) пропорциональна их концентрации в пламени, которая в свою очередь пропорциональна концентрации ионов в растворе: I = k*c.

Эта прямолинейная зависимость соблюдается при постоянстве коэффициента k, на значение которого могут повлиять такие помехи, как самопоглощение, ионизация, образование труднолетучих соединений, изменение режима работы и др.

Интенсивность излучения в эмиссионных методах измеряют в пламенных фотометрах и спектрофотометрах, преобразуя световой поток в электрический ток с помощью фотоэлементов.

Схема пламенного фотометра включает: распылитель раствора, горелку, в которую подается горючая смесь, монохроматор, фотоэлементы и регистрирующее устройство. В качестве монохроматоров используют интерференционные светофильтры (λ ≈ 13нм). Для поглощения постороннего излучения на пути светового потока ставят абсорбционные светофильтры.

В атомно-эмиссионной спектроскопии используют прямоточные горелки с непосредственным введением смеси раствора с воздухом - аэрозоля в пламя. Реже применяются горелки с предварительным смешением газов и аэрозоля.

Способы определения концентрации. В эмиссионной фотометрии пламени для определения концентрации используют прямолинейную зависимость интенсивности аналитического сигнала излучения от концентрации раствора. Метод требует эталонов, т.е. растворов с точно известной концентрацией. Обычно применяют метод градуировочного графика, который строят в координатах «сила фототока - концентрация». Если состав исследуемых образцов неизвестен или отличается от эталонов, то рекомендуется использовать метод добавок.

Если для возбуждения атомов энергии пламени недостаточно, то используют дуговые и искровые электротермические источники. Наиболее известные электротермические источники - дуга постоянного тока и искровой разряд. Дуга возникает при пропускании постоянного или переменного тока 30 А при напряжении 200 В между двумя электродами. Для получения искрового разряда на пару электродов налагают напряжение до 40кВ. При этом возникает разряд, повторяющийся 120 раз в секунду, а температура пламени достигает 4000°С.

Метод атомно-абсорбционной спектроскопии (ААС) основан на поглощении (абсорбции) электромагнитного излучения атомами вещества в свободном состоянии. Общую схему атомной абсорбции можно представить следующим образом: А + hv → V*.

Атомы поглощают кванты света, соответствующие переходу из основного состояния в возбужденное. В результате излучение, проходящее через атомный пар, ослабляется. Зависимость степени поглощения излучения от концентрации атомов описывается законом Бугера-Ламберта-Бера:

lg (l 0 /l 1) = k*l*c,

где l 0 - интенсивность падающего излучения;

l 1 - интенсивность прошедшего через атомный пар излучения;

l - толщина слоя атомного пара;

k - атомный коэффициент поглощения;

величину lg (l 0 /l 1) называют атомным поглощением А, она аналогична оптической плотности в молекулярной абсорбции.

В ААС аналитический сигнал получают от невозбужденных атомов, поэтому для атомизации подходят лишь такие источники, энергии которых хватает для распада вещества на атомы, но не для возбуждения атомов. Количество возбужденных атомов не должно превышать 0,1% от их общего числа. Этим требованиям удовлетворяют пламенные и электротермические атомизаторы, в которых используется тепловая энергия. Перед атомизацией анализируемый образец переводят в раствор. Чтобы поглощения атомами было заметно, нужно направлять на пробу излучение с очень узким интервалом длин волн. В идеале нужно излучение с одной длиной волны, соответствующей одному энергетическому переходу в атоме исследуемого вещества.

К таким идеальным источникам приближаются лампы с полым катодом, представляющие собой стеклянный баллон с кварцевым окном, заполненный инертным газом. К аноду и катоду, закрепленным в баллоне, приложено высокое напряжение. Цилиндр катода изготавливают из того металла, который нужно определять. Под действием высоковольтного разряда атомы инертного газа ионизируются, направляются к катоду и «выбивают» из него атомы металла, которые возбуждаются и испускают излучение с характерным для него линейчатым спектром. Излучение направляют на пламя, где находятся атомы определяемого элемента, поглощающие резонансное излучение источника. Таким образом, для определения каждого элемента нужна своя лампа. Катод можно изготовить из сплава разных металлов, что позволяет, не меняя лампу, определить сразу несколько соответствующих элементов.

Рис. 9. Схема прибора для атомно-абсорбционных изменений: 1 - лампа с полым катодом; 2 - модулятор; 3 - пламя; 4 - монохроматор; 5 - детектор.

Роль кювет выполняет пламя. Для выделения из линейчатого спектра нужной линии служат монохроматоры. Детекторы не отличаются от обычно используемых в оптических приборах. В ААС измеряют относительную интенсивность двух потоков излучения. Один из них проходит через атомный пар, другой является потоком сравнения. На эти световые потоки возможно наложение постороннего излучения - флуоресценции атомов исследуемого вещества при возвращении из возбужденного состояния и свечения пламени. Для устранения мешающего влияния этих видов излучения используют модуляцию светового потока. На пути падающего излучения устанавливают модулятор - диск с прорезями. При этом на детектор попадает постоянный сигнал от пламени, переменный сигнал от источника, прошедший через пробу и другие посторонние сигналы. Переменный сигнал усиливают, остальные отсекают. Сигналы преобразуют в электрический ток.

Для определения концентрации в основном используют метод градуировочного графика и метод добавок.

Метод ААС применим для определения большинства металлов в самых разных объектах. Достоинствами метода является малая зависимость результатов от температуры, высокая чувствительность, что связано с участием в поглощении невозбужденных атомов. Метод ААСобладает высокой избирательностью, поскольку помехи, связанные с перекрыванием спектральных линий, малы. Метод экспресен, погрешность результатов не превышает 4%, предел обнаружения достигает 10 -2 мкг/мл. Методом ААС можно определить 76 элементов в различных объектах.

К недостаткам ААС можно отнести обязательное наличие набора ламп с полым катодом для каждого элемента, а также необходимость перевода образца в растворимое состояние.

Модульная единица 5. Атомно-эмиссионная спектрометрия СЛАЙД 1

Лекция 2: АТОМНО-ЭМИССИОНАЯ СПЕКТРОМЕТРИЯ

Профилактика.

1. Борьба с острыми кишечными инфекциями.

2. Недопущение различных интоксикаций.

3. Правильное регулярное питание.

Аннотация. В лекции рассматриваются теоретические основы метода атомно-эмиссионной спектроскопии, устройство и принцип действия атомно-эмиссионных спектрометров, возможности метода атомно-эмиссионной спектрометрии с использованием различных источников излучения: пламен, плазмы, электрической дуги и электрической искры, а также с различными диспергирующими устройствами.

Ключевые слова: атомно-эмиссионная спектрометрия, терм, пламена, плазма, дуга, искра, лампа тлеющего разряда, монохроматор, полихроматор, призма, дифракционная решетка.

Рассматриваемые вопросы:

1 вопрос. Теоретические основы метода атомно-эмиссионной спектрометрии.

2 вопрос. Источники излучения, используемые в атомно-эмиссионной спектрометрии.

3 вопрос. Спектрометры для атомно-эмиссионной спектрометрии.

4 вопрос. Возможности метода атомно-эмиссионной спектрометрии.

Цели и задачи изучения модульной единицы. В результате изучения данной модульной единицы студенты должны освоить теоретические основы метода атомно-эмиссионной спектроскопии, познакомиться с устройством и принципом действия атомно-эмиссионных спектрометров, знать возможности метода атомно-эмиссионная спектрометрии с использованием различных источников излучения: пламен, плазмы, электрической дуги и электрической искры, а также с различными диспергирующими устройствами.

2.1.1. Принцип метода.

Атомно-эмиссионная спектрометрия – метод качественного и количественного элементного анализа, основанный на получении и детектировании линейчатых спектров, возникающих в результате перехода внешних электронов атомов в возбужденное состояние и последующего самопроизвольного перехода этих электронов на более низкие и основные уровни с испусканием (эмиссией) избыточной энергии в виде квантов электромагнитного излучения.

Линейчатый спектр специфичен для данного элемента, поэтому надлежащий выбор данной линии и ее выделение с помощью диспергирующей системы позволяет аналитику проверить присут­ствие этого элемента и определить его концентрацию.

1.1.2. Атомные спектры испускания.

Каждый элемент периодической системы имеет определенное число элек­тронов, равное его атомному номеру. Электроны с определенной вероятностью расположены на уровнях и подуровнях вокруг ядра в соответствии с квантовой теорией. Квантовая теория была создана Планком, который предположил, что электромагнитная энергия поглощается или испускается дискретно; это озна­чает, что энергия не непрерывна. Энергетическое состояние каждого электрона в свободном атоме характеризуется четырьмя квантовыми числами:


· главное квантовое число п (n принимает значения от 1 до 7 для атомов в основном состоянии).

· орбитальное квантовое число l (l = 0,1,2,...,n- 1) соответствует подуровням s, р, d, f.

· магнитное квантовое число m (любое целое, удовлетворяющее условию –l < m < ­ +l ).

· спиновое квантовое число s (s = ±1/2).

Полный угловой момент количества движения электрона как от орбитального, так и от спинового квантового числа. Для характеристики полного углового момента количества движения электрона вводится еще одно квантовое число – полное или внутреннее квантовое число j . Для атома, имеющего один валентный электрон j = l + s = l ± ½. Если орбитальное квантовое число больше нуля, то внутренне квантовое число имеет два значения, что соответствует двум различным энергетическим состояниям.

Если заряд ядра атома невелик (меньше 35), а число валентных электронов - два или более, то для совокупности этих валентных электронов вводят­ся новые квантовые числа, которые определяются как суммы соответст­вующих квантовых чисел отдельных электронов:

L = Sl i ; S = Ss i ; J = L + S

Группа энергетических состояний, характеризующихся одними и теми же величинами L иS, имеет близкую энергию и образует один терм.

При записи символа терма прежде всего указывают его основную характеристику: квантовое число суммарного орбитального момента L . Если L = 0, то в символе терма записывают прописную букву S , если L = 1, то пишут Р . L , равные 2 и 3, обозначают буквами D и F соответственно. Слева в виде верхнего индекса указывают число близких по энергии состояний, которые образует данный терм, то есть его мультиплетность. Мультиплетность равна 2S + 1, где S – суммарный спин атома. Таким образом, мультиплетность на единицу больше, чем число неспаренных электронов в атоме. Если мультиплетность терма равна 1, то его называют одиночным или синглетным термом. Терм с мультиплетностью, равной 2, называют двойным или дублетным. Справа внизу от буквенного обозначения L в виде индекса записывают значения j . Перед обозначением терма указывают значение главного квантового числа n . Для полностью заполненных электронных подуровней (s 2 , p 6 , d 10) L + S равно 0.

Например, в атоме натрия первый и второй энергетические уровни заполнены полностью, поэтому термы этого атома определяются его единственным валентным электроном. В основном состоянии этот электрон находится на 3s -подуровне. В этом случае терм атома натрия обозначается так:

3 2 S 1/2 . Следует обратить внимание на левый верхний индекс 2, который свидетельствует о формальной мультиплетности этого терма. На самом же деле все термы S являются синглетными (одиночными). При возбуждении атома натрия электрон с подуровня 3s переходит на более высокие подуровни. Первое возбужденное состояние соответствует переходу электрона на подуровень 3р . В этом случае терм атома натрия записывают как 3 2 Р 3/2, 1/2 . Такая запись соответствует следующим значениям квантовых чисел: n = 3, l = 1, j =3/2 или ½. Этот терм – дублет. Энергетические подуровни атома натрия показаны на рис. 1.1.

Рис. 1.1. Термы атома натрия. Стрелками показаны переходы, вызывающие появление в спектре натрия дублета с длинами волн 588,996 и 588,593 нм.

Каждая спектральная линия отражает переход электрона с одного энергетического уровня на другой. Однако не все переходы разрешены. Существуют правила отбора, указывающие, между какими энергетическими уровнями переходы возможны, а между какими – нет. Возможные переходы называют разрешенными, а невозможные – запрещенными. Перечислим основные правила отбора:

1. Разрешены переходы, при которых терм меняется на единицу. Согласно этому правилу возможны переходы P-S, D-P , но невозможны переходы P-P, D-D или D-S .

2. Внутренне квантовое число при переходе может меняться только на ±1 или совсем не меняться. Запрещены переходы, при которых DJ = ±2.

3. Разрешены переходы без изменения мультиплетности.

Например, в атоме натрия разрешен переход с подуровня 3р (дублетный терм 3 2 Р 3/2,1/2)на подуровень 3s (синглетный терм 3 2 S 1/2). Этот переход вызывает появление в спектре натрия двойной желтой линии (дублета). Этот переход полностью соответствует правилам отбора. В соответствии с первым правилом разрешены переходы Р –S . Согласно второму правилу DJ может равняться ±1, как при переходе 3 2 Р 3/2 - 3 2 S 1/2 , или 0, как при переходе 3 2 Р 1/2 - 3 2 S 1/2 . Не нарушается и третье правило, так как формальная мультиплетность терма 3 2 S 1/2 равна 2.

Наиболее яркой линией в спектре является линия, вызванная переходом с первого возбужденного уровня на основной. Такую линию называют резонансной.

Спектр атома любого элемента существенно отличается от спектра его иона в связи с изменением числа оптических электронов в результате ионизации. В таблицах спектральных линий рядом с символом химического элемента приводят римскую цифру, по которой можно судить о кратности ионизации. Цифра I относится к нейтральному атому, цифра II – к однократно ионизированному атому, т.е. катиону с зарядом +1.

В соответствии с правилами отбора и возможными возбужденными уровнями каждый элемент периодической системы может проявлять набор линий (спектр), специфичный для этого элемента. Это объясняет, почему комбинации линий элемента позволяет провести качественный анализ.

Рис. 2.2. Основные и возбужденные состояния атома и катиона алюминия. Показаны разрешенные оптические переходы.

Например, у атома алюминия (рис. 2.2) 46 электронных уровней ниже энергии ионизации, соответствующие примерно 118 линиям в диапазоне 176-1000 нм. Для одно­зарядного иона А1 существует 226 уровней, они дают примерно 318 линий в диапазоне 160-1000 нм. Частицы А1 I и А1 II испускают относительно про­стые спектры, т. е. с ограниченным числом линий. В таком же диапазоне длин волн уран может испускать несколько десятков тысяч линий, что приводит, вероятно, к наиболее сложному из наблюдаемых спектров. Однако, если ре­зонансные линии можно наблюдать в любом источнике излучения, то линии, возникающие из высоковозбужденных состояний, можно наблюдать только с высокотемпературными источниками излучения или при специальных условиях возбуждения.

Излучение, испускаемое пробой, в которой имеются все компоненты за ис­ключением определяемого, называют фоновым излучением. Оно состоит из линий, испускаемых другими (сопутствующими) элементами и континуума, возникающего из неквантуемых переходов.

2.1.3. Интенсивность спектральных линий.

Количественный анализ возможен, если интенсивность линии можно свя­зать с концентрацией испускающих частиц. Интенсивность линии пропорци­ональна:

1) разности энергий верхнего (E m) и нижнего (Е k) уровней перехода;

2) электронной заселенности (n m ) верхнего уровня (Е т) ;

3) числу возможных переходов между Е т н Е k в единицу времени. Эта ве­личина выражается вероятностью перехода А; ее определение дано Эйн­штейном.

Таким образом, интенсивность линии I можно выразить соотношением

1~ (Е т -Е k А×п т

Связь между заселенностями различных уровней была описана Больцма-ном. Если рассматривать заселенности п т и п k уровней Е т и E k соответствен­но, то их отношение определяется уравнением Больцмана:

где k - константа Больцмана (k = 1,380×10 -23 Дж/К = 0,695см -1 × К -1 = 0,8617× 10-4 эВ/К), Т - температура источника излучения и g - статистиче­ский вес (2J + 1), J - квантовое число полного электронного углового момен­та.

Так как заселенность возбужденных уровней пропорциональна экспоненте величины (- Е), то при увеличении Е заселенность очень быстро уменьшает­ся. Возможный путь преодоления этого ограничения заключается в исполь­зовании высокотемпературных источников излучения, например плазмы. Для основного состояния Е = 0 и:

Чтобы получить отношение п т кобщей заселенности уровней атома (или иона) N

N = n 0 + n 1 + ... + n m + ...

можно просуммировать члены типа g т ехр(-Е т /kТ} для всех возможных уровней и определить статистическую сумму по состояниям (Z) в следующем виде:

Z = g 0 + g 1 exp(-E 1 /kT ) + …+ g m exp(-E m /kT ) + …

Уравнение Больцмана принимает вид:

Статистическая сумма по состояниям есть, следовательно, функция темпера­туры. Однако в диапазоне температур большинства источников излучения, используемых в аналитических приложениях, т. е, 2000-7000 К, эти изменения малы или даже ничтожны.

Значит, интенсивность линии может быть записана в виде:

где Ф – коэффициент пересчета с учетом изотропности по телесному углу 4p стерадиан.

Из этого уравнения видно, что интенсивность линии l пропорциональная числу атомов N .

Когда источник излучения достаточно стабилен и сохраняет постоянную температуру, статистическая сумма по состояниям Z будет оставаться посто­янной и число атомов (ионов) N будет пропорционально концентрации с . Для данной линии определяемого элемента g m , А, l и Е т постоянны. Следова­тельно, интенсивность линии l пропорциональна с , что позволяет проводить количественное определение, В относительном количественном анализе ис­пользуют ряд образцов сравнения для построения градуировочного графика, т. е. зависимости интенсивности от концентрации определяемого элемента. Ин­тенсивность линии определяемого элемента в неизвестной пробе используют для нахождения его концентрации по градуировочпому графику. Теоретически возможно выполнить также абсолютныйколичественный анализ, т. е. анализ без использования процедуры градуировки. Однако абсолютный количествен­ный анализ требует знания температуры, телесного угла испускания и т. д. Эти измерения в рутинном анализе осуществить нелегко.

Следует отметить, что в случае постоянной концентрации определяемого элемента, любые малые изменения характеристик источника излучения могут приводить к изменениям температуры и последующим изменениям интенсив­ности линии из-за изменения заселенности возбужденного уровня. При рас­смотрении резонансной линии Аl I 396,15им (Е т = 25347см" 1) увеличение температуры источника излучения на 100 К соответствует увеличению экспо­ненциального члена (-Е т /kТ) примерно на 50% и 5% при 3000 К и 6000 К соответственно. Это объясняет, почему для получения хорошей воспроизводи­мости и сходимости, а также во избежание дрейфа аналитического сигнала, требуется высокая стабильность источника.

В атомно-эмиссионной спектрометрии источник фактически играет двоя­кую роль: первый этап состоит в атомизации анализируемой пробы с целью получить свободные атомы, обычно в основном состоянии; второй - в возбуж­дении атомов в более высоколежащие энергетические состояния. Идеальный источник для эмиссионной спектрометрии должен проявлять отличные анали­тические и инструментальные характеристики. Аналитические характеристи­ки включают число элементов, которые могут быть определены, правильность и воспроизводимость, селективность, отсутствие физических и химических по­мех, долговременную стабильность, концентрационный динамический диапа­зон и пределы обнаружения. Более того, эмиссионная система должна быть способна работать с пробами любого типа, независимо от их формы (жидкой, твердой или газообразной), с возможностью использовать ограниченное коли­чество пробы. Инструментальные характеристики, представляющие интерес, включают простоту работы и обслуживания, автоматизацию, производитель­ность, надежность и размеры системы. Следуеттакже уделить некоторое вни­мание капиталовложениям и стоимости работы.

3.1 Эмиссионный спектральный анализ

Эмиссионный спектральный анализ является физико-химическим методом анализа, а точнее оптическим методом.

Каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, присущими только ему свойствами. ПР, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество.

При использовании ф-х методов нас интересует концентрация анализируемого вещества, т. е. Его содержание в единице объема исследуемого раствора. Концентрацию веществ определяют пользуясь тем, что между ней и значением исходящих от вещества сигналов всегда существует зависимость. Независимо от метода анализа способы расчета содержания искомого компонента в продукте едины для всех физико-химических методов.

3.2 Атомно-эмиссионный спектроскопия: самый популярный многоэлементный метод анализа

Устройство спектрометра для измерения интенсивности излучения света, используемого возбужденными атомами - отдельный внешний источник излучения как токовой, отсутствует: сама проба,ее возбужденные атомы, служат источником излучения. Атомизация и возбуждение атомов происходит в атомизаторе одновременно. Атомизатор представляет собой источник низкотемпературной или высокотемпературной плазмы.

Метод основан на изучении спектров излучения, получаемых при возбуждении проб в жестком источнике возбуждения. Для получения спектра эмиссии частицам анализируемого вещества необходимо придать дополнительную энергию. С этой целью пробу при спектральном анализе вводят в источник света, где она нагревается и испаряется, а попавшие в газовую фазу молекулы диссоциируют на атомы, которые при столкновениях с электронами переходят в возбужденное состояние. В возбужденном состоянии атомы могут находится очень недолго (10-7 сек). Самопроизвольно возвращаясь в нормальное или промежуточное состояние, они испускают избыточную энергию в виде квантов света.

Интенсивность спектральной линии или мощность излучения при переходе атомов из одного энергетического состояния в другое определяется числом излучающих атомов Ni (числом атомов, находящихся в возбужденном состоянии i) и вероятностью Aik перехода атомов из состояния i в состояние k.

Оптимальная температура, при которой достигается максимальная интенсивность линии, зависит от потенциала ионизации атомов и энергии возбуждения данной спектральной линии. Кроме того, степень ионизации атомов, а следовательно, и интенсивность спектральной линии зависят также от химического состава и концентраций других элементов.

Интенсивность спектральной линии зависит от температуры источника света. Поэтому в атомно-эмиссионный спектральный анализе принято измерять интенсивность аналитической линии относительно интенсивности некоторой линии сравнения. Чаще всего это линия, принадлежащая основному компоненту пробы.

В практике атомно-эмиссионного спектрального анализа в качестве источников возбуждения спектров применяют электрические дуги постоянного и переменного тока, пламя, низко- и высоковольтную конденсированную искру, низковольтный импульсный разряд, микроволновой разряд и др.

Для регистрации спектра используют визуальные, фотографические и фотоэлектрические устройства. В простейших приборах - стилометрах и стилоскопах оценка интенсивности спектральных линий производится визуально через окуляр. В спектрографах в качестве приемника излучения используют фотопластинки. В квантометрах и фотоэлектрических стилометрах приемником излучения служит фотоэлимент.

Для количественного анализа необходимо выполнить еще одну операцию: измерить интенсивность спектральных полос, принадлежащих макроэлементам, и по предварительно построенным калибровочным графикам или по эталонам вычислить их концентрацию, т. е. установить количественный состав пробы. Для количественного анализа методом атомно-эмиссионной спектроскопии плазма как источник возбуждения предпочтительнее, чем дуговой или искровой разряд. Вследствие колебаний условий возбуждений при определении концентрации элемента следует для сравнения использовать линию еще какого-нибудь элемента, называемого внутренним стандартом.

Качественный анализ продуктов питания методом атомно-эмиссионной спектроскопии включает следующие операции: получение спектра, определение длин волн спектральных линий. По этим данным с помощью справочных таблиц устанавливают принадлежность спектральных линий к определенным макроэлементам, т. е. Определяют качественный состав пробы.

С использованием плазменных атомизаторов также возможен качественный анализ на металлы и те неметаллы, энергия возбуждения которых лежат в УФ-видимой области.

Все методы атомно-эмиссионной спектроскопии являются относительными и требуют градуировки с использованием подходящих стандартов.

Измерение интенсивности спектральных линий в эмиссионном спектральном анализе могут осуществляться визуальным, фотографическим и фотоэлектрическими способами.

В первом случае проводят визуальное сравнение интенсивностей спектральных линий определяемого макроэлемента и близлежащих линий из спектра основного компонента пробы.

Фотографические способы регистрации спектров применяют в атомно-эмиссионном спектральном анализе наиболее широко. Их преимуществом является документальность анализа, одновременность регистрации, низкие пределы обнаружения многих элементов и возможность многократной статистической обработки спектров

В случае фотографической регистрации градуировочные графики претерпевают сдвиг из-за колебаний свойств фотоэмульсии от одной пластинки к другой и недостаточно точного воспроизведения условий проявления.

Для получения данных с высокой скоростью и точностью широкое применение находят фотоэлектрические способы регистрации и фотометрии спектров. Сущность этих способов заключается в том, что световой поток нужной аналитической линии отделяют от остального спектра пробы с помощью монохроматора и преобразуют в электрический сигнал. Мерой интенсивности линии служит значение этого сигнала (сила тока или напряжение).

Современные спектрометры снабжены базами данных, содержащими до 50000 важнейших линий различных элементов. Путем последовательного сканирования всей области длин волн на таких приборах можно провести полный качественный анализ за достаточно небольшое время - 45 мин.

Атомно-эмиссионная спектроскопия находит применение везде, где требуется многоэлементный анализ: в медицине, при исследовании состава руд, минералов, вод, анализе качества продуктов питания и содержании в них макроэлементов.

3.3 Атомно-абсорбционный спектральный анализ

ААА - это метод определения концентрации по поглощению слоев параметров элемента монохроматического света, длина волны которого соответствует центру линии поглощения. Анализ проводят по наиболее чувствительным в поглощении спектральным линиям, которые соответствуют переходам из основного состояния в более высокое энергетическое состояние. В большинстве случаев эти линии являются также и наиболее чувствительными и в эмиссионном анализе. Если молекулы вещества поглощают свет полосами в широких интервалах волн, то поглощение парами атомов происходит в узких пределах, порядка тысячной доли нанометра.

В ААА анализируемое вещество под действием тепловой энергии разлагается на атомы. Этот процесс называется атомизацией, т. е. переведение вещества в парообразное состояние, при котором определяемые элементы находятся в виде свободных атомов, способных к поглощению света. Излучение и поглощение света связаны с процессами перехода атомов из одного стационарного состояния в другое. Возбуждаясь атомы переходят в стационарное состояние k с энергией Ek и затем, возвращаясь в исходное основное состояние i с энергией испускают свет определенной частоты.

Излучательные переходы осуществляются спонтанно без какого-либо внешнего воздействия.