Меню

На рисунке изображены график дифференцируемой. Непрерывность функции, имеющей производную. Теорема

Мероприятия

02.01.2020

Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

ПРОИЗВОДНАЯ –производной функции y = f (x ), заданной на некотором интервале (a , b ) в точке x этого интервала, называется предел, к которому стремится отношение приращения функции f в этой точке к соответствующему приращению аргумента, когда приращение аргумента стремится к нулю.

Производную принято обозначать так:

Широко употребляются и другие обозначения:

Мгновенная скорость.

Пусть точка M движется по прямой. Расстояние s движущейся точки, отсчитываемое от некоторого начального ее положения M 0 , зависит от времени t , т.е. s есть функция времени t : s = f (t ). Пусть в некоторый момент времени t движущаяся точка M находилась на расстоянии s от начального положения M 0, а в некоторый следующий момент t + Dt оказалась в положении M 1 – на расстоянии s + Ds от начального положения (см. рис .).

Таким образом, за промежуток времени Dt расстояние s изменилось на величину Ds . В этом случае говорят, что за промежуток времени Dt величина s получила приращение Ds .

Средняя скорость не может во всех случаях точно охарактеризовать быстроту перемещения точки M в момент времени t . Если, например, тело в начале промежутка Dt перемещалось очень быстро, а в конце очень медленно, то средняя скорость не сможет отразить указанных особенностей движения точки и дать представление об истинной скорости ее движения в момент t . Чтобы точнее выразить истинную скорость с помощью средней скорости, надо взять меньший промежуток времени Dt . Наиболее полно характеризует скорость движения точки в момент t тот предел, к которому стремится средняя скорость при Dt ® 0. Этот предел называют скоростью движения в данный момент:

Таким образом, скоростью движения в данный момент называется предел отношения приращения пути Ds к приращению времени Dt , когда приращение времени стремится к нулю. Так как

Геометрическое значение производной. Касательная к графику функции.

Построение касательных – одна из тех задач, которые привели к рождению дифференциального исчисления. Первый опубликованный труд, относящийся к дифференциальному исчислению и принадлежащий перу Лейбница, имел название Новый метод максимумов и минимумов, а также касательных, для которого не служат препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления .

Пусть кривая есть график функции y = f (x ) в прямоугольной системе координат (см . рис.).

При некотором значении x функция имеет значение y = f (x ). Этим значениям x и y на кривой соответствует точка M 0(x , y ). Если аргументу x дать приращение Dx , то новому значению аргумента x + Dx соответствует новое значение функции y+ Dy = f (x + Dx ). Соответствующей ему точкой кривой будет точка M 1(x + Dx , y + Dy ). Если провести секущую M 0M 1 и обозначить через j угол, образованный секущей с положительным направлением оси Ox , из рисунка непосредственно видно, что.

Если теперь Dx стремится к нулю, то точка M 1 перемещается вдоль кривой, приближаясь к точке M 0, и угол j изменяется с изменением Dx . При Dx ® 0 угол j стремится к некоторому пределу a и прямая, проходящая через точку M 0 и составляющая с положительным направлением оси абсцисс угол a, будет искомой касательной. Ее угловой коэффициент:

Следовательно, f ´(x ) = tga

т.е. значение производной f ´(x ) при данном значении аргумента x равняется тангенсу угла, образованного касательной к графику функции f (x ) в соответствующей точке M 0(x ,y ) с положительным направлением оси Ox .

Дифференцируемость функций.

Определение. Если функция y = f (x ) имеет производную в точке x = x 0, то функция дифференцируема в этой точке.

Непрерывность функции, имеющей производную. Теорема.

Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–Ґ х x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

Некоторые теоремы о дифференцируемых функциях. Теорема о корнях производной (теорема Ролля). Если функция f (x ) непрерывна на отрезке [a ,b ], дифференцируема во всех внутренних точках этого отрезка и на концах x = a и x = b обращается в нуль (f (a ) = f (b ) = 0), то внутри отрезка [a ,b ] существует, по крайней мере одна, точка x = с , a c b, в которой производная f ў(x ) обращается в нуль, т.е. f ў(c ) = 0.

Теорема о конечных приращениях (теорема Лагранжа). Если функция f (x ) непрерывна на отрезке [a , b ] и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка [a , b ] найдется по крайней мере одна точка с , a c b, что

f (b ) – f (a ) = f ў(c )(b a ).

Теорема об отношении приращений двух функций (теорема Коши). Если f (x ) и g (x ) – две функции, непрерывные на отрезке [a , b ] и дифференцируемые во всех внутренних точках этого отрезка, причем g ў(x ) нигде внутри этого отрезка не обращается в нуль, то внутри отрезка [a , b ] найдется такая точка x = с , a c b, что

Производные различных порядков.

Пусть функция y = f (x ) дифференцируема на некотором отрезке [a , b ]. Значения производной f ў(x ), вообще говоря, зависят от x , т.е. производная f ў(x ) представляет собой тоже функцию от x . При дифференцировании этой функции получается так называемая вторая производная от функции f (x ), которая обозначается f ўў (x ).

Производной n- го порядка от функции f (x ) называется производная (первого порядка) от производной n- 1- го и обозначается символом y (n ) = (y (n – 1))ў.

Дифференциалы различных порядков.

Дифференциал функции y = f (x ), где x – независимая переменная, есть dy = f ў(x )dx , некоторая функция от x , но от x может зависеть только первый сомножитель f ў(x ), второй же сомножитель (dx ) является приращением независимой переменной x и от значения этой переменной не зависит. Так как dy есть функция от x , то можно определить дифференциал этой функции. Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d 2y :

d (dx ) = d 2y = f ўў(x )(dx ) 2 .

Дифференциалом n- го порядка называется первый дифференциал от дифференциала n- 1- го порядка:

d n y = d (d n –1 y ) = f (n )(x )dx (n ).

Частная производная.

Если функция зависит не от одного, а от нескольких аргументов x i (i изменяется от 1 до n , i = 1, 2,… n ), f (x 1, x 2,… x n ), то в дифференциальном исчислении вводится понятие частной производной, которая характеризует скорость изменения функции нескольких переменных, когда изменяется только один аргумент, например, x i . Частная производная 1-ого порядка по x i определяется как обычная производная, при этом предполагается, что все аргументы, кроме x i , сохраняют постоянные значения. Для частных производных вводятся обозначения

Определенные таким образом частные производные 1-ого порядка (как функции тех же аргументов) могут, в свою очередь, также иметь частные производные, это частные производные второго порядка и т.д. Взятые по разным аргументам такие производные называются смешанными. Непрерывные смешанные производные одного порядка не зависят от порядка дифференцирования и равны между собой.

Анна Чугайнова

Производной функции в точке называется предел отношения приращения функции к приращению аргумента, при условии, что стремится к нулю.

Основные правила нахождения производной

Если - и - дифференцируемые функции в точке, (т.е. функции, имеющие производные в точке), то:

Таблица производных основных функций

1. 8.

2. 9.

3. 10.

5. 12.

6. 13.

7.

Правило дифференцирования сложной функции. Если и, т.е. , где и имеют производные, то

Дифференцирование функции, заданной параметрически . Пусть зависимость переменной от переменной задана параметрически посредством параметра:

Задание 3 . Найти производные данных функций.

1)

Решение . Применяя правило 2 нахождения производных и формулы 1 и 2 таблицы производных, получаем:

Решение. Применяя правило 4 нахождения производных и формулы 1 и 13 таблицы производных, получаем:

.

Решение. Применяя правило 3 нахождения производных и формулы 5 и 11 таблицы производных, получаем:

Решение. Полагая, где, согласно формуле нахождения производной сложной функции, получим:

Решение . Имеем: Тогда, согласно формуле нахождения производной функции, заданной параметрически, получаем:

4. Производные высших порядков. Правило Лопиталя .

Производной второго порядка функции называется производная от ее производной, т.е. . Для второй производной используются следующие обозначения: или, или.

Производной - го порядка от функции называется производная от ее производной -го порядка. Для производной -го порядка используются следующие обозначения: или, или.

Правило Лопиталя. Пусть функции и дифференцируемы в окрестности точки, причем производная не обращается в нуль. Если функции и являются одновременно либо бесконечно малыми, либо бесконечно большими при, и при этом существует предел отношения при, то существует также и предел отношения при. Причем

.

Правило применимо и в случае, когда.

Заметим, что в некоторых случаях раскрытие неопределенностей вида или может потребовать неоднократного применения правила Лопиталя.

Неопределенности вида и т.д. с помощью элементарных преобразований легко сводятся к неопределенностям вида или.

Задание 4 . Найти предел, пользуясь правилом Лопиталя.

Решение Здесь мы имеем неопределенность вида, т.к. при. Применим правило Лопиталя:

.

После применения правила Лопиталя мы снова получили неопределенность вида, т.к. при. Применяя снова правило Лопиталя повторно, получим:

.

5. Исследование функций

а) Возрастание и убывание функций

Функция называется возрастающей на отрезке , если для любых точек и из отрезка, где, имеет место неравенство. Если функция непрерывна на отрезке и при, то возрастает на отрезке.

Функция называется убывающей на отрезке ,если для любых точек и из отрезка, где, имеет место неравенство. Если функция непрерывна на отрезке и при, то убывает на отрезке.

Если функция является только возрастающей или только убывающей на данном интервале, то она называется монотонной на интервале.

b) Экстремумы функций

точкой минимума функции .

Если существует -окрестность точки такая, что для всех точек из этой окрестности имеет место неравенство, то точка называется точкой максимума функции .

Точки максимума и минимума функции называются ее точками экстремума.

Точка называется стационарной точкой, если или не существует.

Если существует -окрестность стационарной точки такая, что при и при, то - точка максимума функции.

Если существует -окрестность стационарной точки такая, что при и при, то -точка минимума функции.

a) Направление выпуклости. Точки перегиба

выпуклым вверх на интервале , еслион расположен ниже касательной, построенной к графику функции в любой точке этого интервала.

Достаточным условием выпуклости вверх графика функции на интервале является выполнение неравенства для любого из рассматриваемого интервала.

График дифференцируемой функции называется выпуклым вниз на интервале , еслион расположен выше касательной, построенной к графику функции в любой точке этого интервала.

Достаточным условием выпуклости вниз графика функции на интервале является выполнение неравенства для любого из рассматриваемого интервала.

Точка, в которой меняется направление выпуклости графика функции, называется точкой перегиба.

Точка, где или не существует, является абсциссой точки перегиба, если слева и справа от нее имеет разные знаки.

d) Асимптоты

Если расстояние от точки графика функции до некоторой прямой стремится к нулю при бесконечном удалении точки от начала координат, то прямую называют асимптотой графика функции.

Если существует число такое, что, то прямая является вертикальной асимптотой.

Если существуют пределы , то прямая является наклонной (горизонтальной при k=0) асимптотой.

e) Общее исследование функции

1. Область определения функции

2. Точки пересечения графика с осями координат

3. Исследование функции на непрерывность, четность / нечетность и периодичность

4. Интервалы монотонности функции

5. Точки экстремума функции

6. Интервалы выпуклости и точки перегиба графика функции

7. Асимптоты графика функции

8. График функции.

Задание 5 . Исследовать функцию и построить ее график.

Решение . 1) Функция определена на всей числовой оси за исключением точки, где знаменатель дроби обращается в нуль. . Имеем: не принадлежит области определения данной функции. Следовательно, стационарными точками данной функции являются точки, минимальное значение (что показано на рисунке).

В задании №7 профильного уровня ЕГЭ по математике необходимо продемонстрировать знания функции производной и первообразной. В большинстве случаев достаточно просто определения понятий и понимания значений производной.

Разбор типовых вариантов заданий №7 ЕГЭ по математике профильного уровня

Первый вариант задания (демонстрационный вариант 2018)

На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x 1 , x 2 , …, x 9 . Среди этих точек найдите все точки, в которых производная функции y = f(x) отрицательна. В ответе укажите количество найденных точек.

Алгоритм решения:
  1. Рассматриваем график функции.
  2. Ищем точки, в которых функция убывает.
  3. Подсчитываем их количество.
  4. Записываем ответ.
Решение:

1. На графике функция периодически возрастает, периодически убывает.

2. В тех интелвалах, где функция убывает, производная имеет отрицательные значения.

3. В этих интервалах лежат точки x 3 , x 4 , x 5 , x 9 . Таких точек 4.

Второй вариант задания (из Ященко, №4)

На рисунке изображён график функции у = f(x). На оси абсцисс отмечены точки -2, -1, 2, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Алгоритм решения:
  1. Рассматриваем график функции.
  2. Рассматриваем поведение функции в каждой из точек и знак производной в них.
  3. Находим точки в наибольшим значением производной.
  4. Записываем ответ.
Решение:

1. Функция имеет несколько промежутков убывания и возрастания.

2. Там, где функция убывает. Производная имеет знак минус. Такие точки есть среди указанных. Но на графике есть точки, в которых функция возрастает. В них производная положительная. Это точки с абсциссами -2 и 2.

3. Рассмотрим график в точках с х=-2 и х=2. В точке х=2 функция круче уходит вверх, значит касательная в этой точке имеет больший угловой коэффициент. Следовательно, в точке с абсциссой 2. Производная имеет наибольшее значение.

Третий вариант задания (из Ященко, №21)

Прямая является касательной к графику функции . Найдите а.

Алгоритм решения:
  1. Приравняем уравнения касательной и функции.
  2. Упрощаем полученное равенство.
  3. Находим дискриминант.
  4. Определяем параметр а , при котором решение единственное.
  5. Записываем ответ.
Решение:

1. Координаты точки касания удовлетворяют обоим уравнениям: касательной и функции. Поэтому мы можем приравнять уравнения. Получим:

2. Упрощаем равенство, перенеся все слагаемые в одну сторону:

3. В точке касания должно быть одно решение, поэтому дискриминант полученного уравнения должен равняться нулю. Таково условие единственности корня квадратного уравнения.

4. Получаем:

Про геометрический смысл написано много теории. Не буду вдаваться в вывод приращения функции, напомню основное для выполнения заданий:

Производная в точке x равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке, то есть это тангенс угла наклона к оси Х.

Возьмем сразу задание из ЕГЭ и начнем в нем разбираться:

Задание №1. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Кто очень торопится и не хочет разбираться в объяснениях: стройте до любого такого треугольника (как показано ниже) и делите стоячую сторону (вертикальную) на лежащую (горизонтальную) и будет вам счастье, если про знак не забудите (если прямая убывает(→↓), то ответ должен быть с минусом, если прямая возрастает(→), то ответ должен быть положительный!)

Найти нужно угол между касательной и осью Х, назовем его α: проведем параллельную оси Х прямую в любом месте через касательную к графику, получим тот же угол.

Лучше не брать точку х0, т.к. понадобится большая лупа для определения точных координат.

Взяв любой прямоугольный треугольник (на рисунке предложено 3 варианта), найдем tgα (углы, то равны, как соответственные), т.е. получим производную функции f(x) в точке x0. Почему же так?

Если мы проведем касательные в других точках x2, x1 и т.д. касательные будут другие.

Вернемся к 7 классу, чтобы построить прямую!

Уравнение прямой задается уравнением y = kx + b , где

k - наклон относительно оси Х.

b - расстояние между точкой пересечения с осью Y и началом координат.

Производная прямой, всегда одна и та же: y" = k.

В какой бы точке на прямой мы не взяли производную, она будет неизменна.

Поэтому, осталось только найти tgα (как было сказано выше: делим стоячую сторону на лежачую). Делим противолежащий катет на прилежащий, получаем, что k = 0,5. Однако, если график убывает, коэффициент отрицательный: k = −0,5.

Советую себя проверять вторым способом:
По двум точкам можно задать прямую. Найдем координаты двух любых точек. Например, (-2;-2) и (2;-4):

Подставим в уравнение y = kx + b вместо y и х координаты точек:

−2 = −2k + b

Решив эту систему, получим b = −3, k = −0,5

Вывод: Второй способ дольше, но в нем вы не забудете про знак.

Ответ: − 0,5

Задание №2 . На рисунке изображён график производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, ..., x8. Сколько из этих точек лежит на промежутках возрастания функции f(x) ?


Если график функции убывает - производная отрицательна (верно и наоборот).

Если график функции возрастает - производная положительна (верно и наоборот).

Эти две фразы помогут вам решить большую часть задач.

Внимательно смотрите, рисунок производной вам дан или функции, а дальше выбирайте одну из двух фраз.

Построим схематично график функции. Т.к. нам дан график производной, то там, где она отрицательна, график функции убывает, где положительна - возрастает!

Получается, что 3 точки лежат на участках возрастания: x4; x5; x6.

Ответ: 3

Задание №3. Функция f(x) определена на промежутке (-6; 4). На рисунке изображен график ее производной . Найдите абсциссу точки, в которой функция принимает наибольшее значение.

Советую всегда строить, как идет график функции, такими стрелочками или схематично со знаками (как в №4 и №5):

Очевидно, если график возрастает до −2, то максимальная точка и есть −2.

Ответ: −2

Задача №4. На рисунке изображён график функции f(x) и двенадцать точек на оси абсцисс: x1, x2, ..., x12. В скольких из этих точек производная функции отрицательна?


Задача обратная, дан график функции, нужно схематично построить, как будет выглядеть график производной функции, и посчитать, сколько точек будет лежать в отрицательном диапазоне.

Положительные: x1, x6, x7, x12.

Отрицательные: x2, x3, x4, x5, x9, x10, x11.

Ответ: 7

Еще один вид заданий, когда спрашивается про какие-то страшные "экстремумы"? Что это такое вам найти не составит труда, я же поясню для графиков.

Задача №5. На рисунке изображен график производной функции f(x), определенной на интервале (-16; 6). Найдите количество точек экстремума функции f(x) на отрезке [-11; 5].

Отметим промежуток от -11 до 5!

Обратим свои светлые очи на табличку: дан график производной функции => тогда экстремумы это точки пересечения с осью X.

Ответ: 3

Задача №6. На рисунке изображен график производной функции f(x), определенной на интервале (-13; 9). Найдите количество точек максимума функции f(x) на отрезке [-12; 5].

Отметим промежуток от -12 до 5!

Можно одним глазом взглянуть в табличку, точка максимума - это экстремум, такой, что до него производная положительна (функция возрастает), а после него производная отрицательна (функция убывает). Такие точки обведены в кружочек.

Стрелочками показано, как ведет себя график функции

Ответ: 3

Задача №7. На рисунке изображен график функции f(x),определенной на интервале (-7; 5). Найдите количество точек, в которых производная функции f(x) равна 0.


Можно посмотреть на выше приведенную табличку (производная равна нулю, значит это точки экстремума). А в даной задаче дан график функции, значит требуется найти количество точек перегиба !

А можно, как обычно: строим схематический график производной.

Производная равна нулю, когда график функций меняет свое направление (с возрастания на убывание и наоборот)


Ответ: 8

Задача №8. На рисунке изображен график производной функции f(x), определенной на интервале (-2; 10). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

Построим схематично график функции:

Там, где он возрастает, получаем 4 целые точки: 4 + 5 + 6 + 7 = 22.

Ответ: 22

Задача №9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 6). Найдите количество точек f(x), в которых касательная к графику функции параллельна прямой y = 2x + 13 или совпадает с ней.

Нам дан график производной! Значит, и нашу касательную нужно «перевести» в производную.

Производная касательной: y" = 2.

А теперь построим обе производные:

Касательные пересекаются в трех точках, значит, наш ответ 3.

Ответ: 3

Задача №10. На рисунке изображен график функции f(x), и отмечены точки -2, 1, 2, 3. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.



Задание чем-то похоже на первое: чтобы найти значение производной, нужно построить касательную к этому графику в точке и найти коэффициент k.

Если прямая убывает, k < 0.

Если прямая возрастает, k > 0.

Подумаем, как значение коэффициента отразится на наклоне прямой:

При k = 1 или k = − 1 график будет посередине между осями Х и У.

Чем ближе прямая к оси Х, тем ближе коэффициент k нулю.

Чем ближе прямая к оси Y, тем ближе коэффициент k к бесконечности.

В точке -2 и 1 k<0, однако в точке 1 прямая убывает "быстрее" больше похоже на ось Y => именно там и будет наименьшее значение производной

Ответ: 1

Задание №11. Прямая является касательной y = 3x + 9 к графику функции y = x³ + x² + 2x + 8 . Найдите абсциссу точки касания.

Прямая будет касательной к графику, когда графики имеют общую точку, как и их производные. Приравняем уравнения графиков и их производные:

Решив второе уравнение, получаем 2 точки. Чтобы проверить, какая из них подходит, подставляем в первое уравнение каждый из иксов. Подойдет только один.

Кубическое уравнение совсем решать не хочется, а квадратное за милую душу.

Вот только, что записывать в ответ, если получится два "нормальных" ответа?

При подстановке икса (х) в первоначальные графики y = 3x + 9 и y = x³ + x² + 2x + 8 должен получиться один и тот же Y

y= 1³+1²+2×1+8=12

Верно! Значит x=1 и будет ответом

Ответ: 1

Задание №12. Прямая y = − 5x − 6 является касательной к графику функции ax² + 5x − 5 . Найдите a .

Аналогично приравняем функции и их проивзодные:

Решим эту систему относительно переменных a и x :

Ответ: 25

Задание с производными считается одним из самых сложных в первой части ЕГЭ, однако, при небольшой доли внимательности и понимания вопроса у вас все получится, и вы поднимете процент выполнения этого задания!

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .

Если задание решено правильно, то получаешь 1 балл .

На решение отводится примерно 5 минут.

Чтобы решить задание 7 по математике профильного уровня необходимо знать:

  1. Задачи подразделяются на несколько видов:
    • физический смысл производной.
    • геометрический смысл производной и касательная;
    • применение производной к исследованию функций;
    • первообразная.
  2. Знания функции производной и .
  3. А в большинстве случаев просто определения понятий и понимания значений производной.
  • Производная – скорость изменения функции. Производная положительна на промежутках, на которых функция в озрастает и отрицательна на промежутках, на которых функц ия убывает.
  • Точки экстремума, максимума и минимума. Точка экстремума – максимальное/минимальное значение функции на заданном множестве. Если достигается наибольшее значение, то точка экстремума носит название «точка максимума», если достигается наименьшее значение, то точка экстремума носит название «точка минимума».
  • Первообразная. Функцию F(x) называют первообразной для функции f(х) на заданном промежутке, если для всех х из этого промежутка выполняется равенство F′(x) = f (x). Операция нахождения первообразной функции называется интегрированием.
  • Интегрирование – математическое действие, обратное дифференцированию, то есть нахождению производной. Интегрирование позволяет по производной функции найти саму функцию.