Меню

Термоядерная реакция. План-конспект урока по физике на тему «Термоядерные реакции. Применение ядерной энергии» (11 класс) Ядерные и термоядерные реакции презентация

Конкурсы

Физика - 9

Термоядерная реакция


Термоядерная реакция

Реакция слияния (синтеза) легких ядер (таких, как водород, гелий и др), происходящая при температурах порядка сотен миллионов градусов

Почему протекание термоядерных реакций возможно только при очень высоких температурах?


Пример термоядерной реакции

Реакция идет с выделением энергии

Реакция была реализована в термоядерной бомбе и носила неуправляемый характер


Какая реакция энергетически более выгодна

(в расчете на один нуклон):

синтез легких ядер или деление тяжелых?


Сравнение термоядерной энергии и энергии, выделяющейся при реакции горения

Сгорание

2 вагонов каменного угля

Синтез

4 г гелия


Управляемые термоядерные реакции

В чем заключается основная трудность при

осуществлении термоядерных реакций?

Необходимо удерживать плазму в ограниченном пространстве без соприкосновения со стенками установки с помощью магнитного поля.


Установка ТОКАМАК для осуществления управляемого термоядерного синтеза

ТОКАМАК ( то роидальная ка мера ма гнитные к атушки )


Международный экспериментальный термоядерный реактор ITER

Конструкция реактора ITER, строительство которого уже началось и должно по проекту закончиться к 2018 году. Мощность реактора должна составлять не менее 500 MВт. Для оценки размеров внизу на чертеже (справа) помещен силуэт человека


Термоядерная электростанция

По принципу работы термоядерная электростанция похожа на обычные тепловые электростанции и отличается от них лишь конструкцией «печи» и типом топлива


Энергия Солнца – это энергия

термоядерных реакций

Водородный цикл – цепочка из трех термоядерных реакций, приводящих к образованию гелия из водорода:

Ханс Бете

американский ученый

Нобелевская премия


Физика - 9

Термоядерная реакция

Д.з. § 79,

К.р. по § 65 – 78 «Строение атома и атомного ядра»

Туманов Павел

Синтез лёгких ядер. Создание и принцип действия водородной бомбы.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Презентация по физике на тему: «Термоядерные реакции» у ченика 11 «А» класса ГБОУ СОШ № 1465 Туманова Павла Учитель физики Л.Ю. Круглова

Термоядерные реакции Термоядерная реакция - разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счёт кинетической энергии их теплового движения.

Происхождение термина Для того чтобы произошла ядерная реакция, исходные атомные ядра должны преодолеть так называемый « кулоновский барьер » - силу электростатического отталкивания между ними. Для этого они должны иметь большую кинетическую энергию. Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции. Именно эту взаимосвязь нагревания вещества и ядерной реакции и отражает термин «термоядерная реакция».

Кулоновский барьер Кулоновский барьер - потенциальный барьер, который необходимо преодолеть атомным ядрам (которые заряжены положительно) для того, чтобы сблизиться друг с другом для возникновения притяжения, вызванного короткодействующим сильным взаимодействиям кулонов (ядерными силами). Кулоновский барьер есть следствие того, что, согласно закону Кулона, одноимённо заряженные тела отталкиваются. На малых расстояниях ядерные силы между двумя протонами сильнее кулоновских сил, расталкивающих одноимённо заряженные частицы; однако ядерные силы убывают с ростом расстояния значительно быстрее кулоновских сил. В результате зависимость суммарного потенциала взаимодействия ядер от расстояния имеет максимум (вершину кулоновского барьера) на некотором расстоянии.

Мюонный катализ Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов. Мюоны µ − вступая в взаимодействие с термоядерным топливом образуют мезомолекулы, в которых расстояние между ядрами атомов топлива несколько меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер. Мюон – элементарная частица, образующаяся в космическом излучении на высоте 300км над поверхностью земли.

Термоядерные реакции (1)D+T→ 4He(3.5 MeV)+ n(14.1 MeV) (2а)D+D→ T(1.01 MeV)+ p(3.02 MeV) (2б) → 3He(0.82 MeV)+ n(2.45 MeV) (3)D+3He→ 4He(3.9 MeV)+ p(14.7 MeV) (4)T+T→ 4He +2 n+ 11.3 MeV (5)3He+3He→ 4He +2 p (6а)3He+T→ 4He + p +n+ 12.1 MeV (6б) → 4He(4.8 MeV)+ D(9.5 MeV) (6в) → 4He(0.5 MeV)+ n(1.9 MeV)+p(11.9 MeV)

Водородная бомба Термоядерное оружие (она же водородная бомба) - тип ядерного, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется колоссальное количество энергии.

Общее описание Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6 . Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, Li-6 - единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотопе лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Триггер Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

Контейнер с термоядерным горючим Контейнер с термоядерным горючим - основной элемент бомбы. Внутри него находится термоядерное горючее - дейтерид лития-6 - и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 - вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы. B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

История Первая в мире водородная бомба - советская РДС-6 была взорвана 12 августа 1953 года на полигоне в Семипалатинске. 1 ноября 1952 года США взорвали первый термоядерный заряд на атолле Эниветок. Устройство, испытанное США в 1952 году, фактически не являлось «бомбой», а представляла собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же ученые разработали именно бомбу - законченное устройство, пригодное к практическому применению. РДС-6

Самая крупная когда-либо взорванная водородная бомба - советская 58-мегатонная « царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила. Царь-бомба

Использованные материалы: Википедия Google.ru

Cлайд 1

Cлайд 2

Реакция слияния легких ядер при очень высокой температуре, сопровождающаяся выделением энергии, называется термоядерной реакцией.

Cлайд 3

Для слияния необходимо, чтобы расстояние между ядрами приблизительно было равно 0,000 000 000 001 см. Однако этому препятствуют кулоновские силы. Они могут быть преодолены при наличии у ядер большой кинетической энергии. Особенно большое практическое значение имеет то, что при термоядерной реакции на каждый нуклон выделяется намного больше энергии, чем при ядерной реакции. Например, при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ, а при делении ядра урана на один нуклон приходится примерно 0,9 МэВ.

Cлайд 4

Управляемая термоядерная реакция - энергетически выгодная реакция. Однако она может идти лишь при очень высоких температурах (порядка несколько сотен млн. градусов). При большой плотности вещества такая температура может быть достигнута путем создания в плазме мощных электронных разрядов. При этом возникает проблема - трудно удержать плазму. Самоподдерживающиеся термоядерные реакции происходят в звездах.

Cлайд 5

В настоящее время в России и ряде других стран ведутся работы по осуществлению управляемой термоядерной реакции. Энергетический кризис стал реальной угрозой для человечества. В связи с этим ученые предложили добывать изотоп тяжелого водорода - дейтерий - из морской воды и подвергать реакции ядерного расплава при температурах около 100 миллионов градусов Цельсия. При ядерном расплаве дейтерий, полученный из одного килограмма морской воды будет способен произвести столько же энергии, сколько выделяется при сжигании 300 литров бензина

Cлайд 6

ТОКАМАК (тороидальная магнитная камера с током) – это электрофизическое устройство, основное назначение которого – формирование плазмы, что возможно при температурах около 100 млн. градусов, и сохранение её достаточно долгое время в заданном объеме. Возможность получения плазмы при сверхвысоких температурах позволяет осуществить термоядерную реакцию синтеза ядер гелия из исходного сырья, изотопов водорода (дейтерия и трития). В ходе реакции должна выделяться энергия, которая будет существенно больше, чем энергия, затрачиваемая на формирование плазмы.

Cлайд 7

Основы теории управляемого термоядерного синтеза заложили в 1950 году И. Е. Тамм и А. Д. Сахаров, предложив удерживать магнитным полем горячую плазму, образовавшуюся в результате реакций. Эта идея и привела к созданию термоядерных реакторов - токамаков. При большой плотности вещества требуемая высокая температура в сотни млн. градусов может быть достигнута путем создания в плазме мощных электронных разрядов. Проблема: трудно удержать плазму.

План-конспект урока

« »

1.Предмет: ФИЗИКА

2. Класс: 11

3.Тема и номер урока в теме: Физика атомного ядра(16 урок)

4. Базовый учебник: «Физика. 11 класс», Г. Я. Мякишев, Б. Б. Буховцев, В. М. Чаругин, М., Просвещение, 2014 г.

5.Цель урока: познакомиться с протеканием термоядерной реакции и применением ядерной энергетики .

6. Планируемые результаты:

-предметные : ученик узнает о реакции слияния легких ядер при очень высокой температуре, о роли термоядерной реакции в эволюции Вселенной;

ученик познакомится с реакцией взаимодействия дейтерия и трития водорода.

- метапредметные:

регулятивные : ученик самостоятельно ставит цели и планирует пути достижения; распределяет своё время;

ученик оценивает свои возможности достижения цели;

коммуникативные: ученик полно и точно выражает свои мысли; организовывает и планирует учебное взаимопонимание с учителем и сверстниками;

познавательные: ученик даёт определения понятиям, ученик получает возможность познакомиться с важностью применения неисчерпаемого источника энергии порядка 17 МэВ;

-личностные : ученик получит возможность для формирования устойчивой учебно – познавательной мотивации, готовности к самообразованию и самовоспитанию.

7.Тип урока: урок получения нового знания.

8.Формы работы учащихся : индивидуальная, фронтальная.

9.Необходимое техническое оборудование: компьютер, проектор, учебник, экран, Электронные образовательные ресурсы: информационный, (), установленный ОМС-плеер.

Структура и ход урока

I. Организационный момент

Приветствие;

Определение отсутствующих;

Проверка готовности учащихся к уроку;

Организация внимания.

II . Актуализация знания

В начале этого занятия нужно повторить изученный материал, который будет необходим нам для изучения нового материала.

III . Мотивирование к учебной деятельности

Возможны два принципиально различных способа освобождения ядерной энергии: деление тяжелых ядер и слияние легких ядер (термоядерный синтез).

При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Это видно из кривой зависимости удельной энергии связи от массового числа A. Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением A. Поэтому синтез любого ядра с A < 60 из более легких ядер должен сопровождаться выделением энергии. Общая масса продуктов реакции синтеза будет в этом случае меньше массы первоначальных частиц.

Рис. 1.1. Зависимость удельной энергии связи ядра от массового числа

IV . Самоопределение деятельности. Целеполагание. Формулировка темы урока.

Попробуйте сформулировать цель урока.

Можно ли получить энергию, используя лёгкие ядра? Что скорее всего должно происходить?

Всё это вы узнаете сегодня на этом уроке.

Запишите, пожалуйста, тему урока: « Термоядерные реакции. Применение ядерной энергии »

V . Построение проекта выхода из затруднения

Познакомьтесь, пожалуйста, с наглядной информацией о слиянии лёгких ядер: моделью демонстрации синтеза гелия, термоядерными реакциями в горячих звездах, управляемыми термоядерными реакциями, источниками энергии звезд, используя ЭОР информационного характера:

Более подробно изучите тему по учебнику (с.320-324) и найдите ответы на следующие вопросы:

Учитель подводит итоги урока, акцентирует внимание на конечных результатах учебной деятельности. Выставляет оценки за урок.

Учитель предлагает учащимся продолжить предложение:

Я узнал…

Теперь я могу…

Я затруднялся…

Мне понравилось…

I Х. Домашнее задание (учитель даёт пояснение к выполнению домашней работы)

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Термоядерная реакция - реакция слияния легких ядер при очень высокой температуре, сопровождающаяся выделением энергии Энергетически очень выгодна!!!

3 слайд

Описание слайда:

Синтез 4 г гелия Сгорание 2 вагонов каменного угля Сравнение термоядерной энергии и выделяющейся при реакции горения

4 слайд

Описание слайда:

Условия протекания термоядерной реакции Для того, чтобы произошла реакция синтеза, исходные ядра должны попасть в сферу действия ядерных сил(сблизиться на расстояние 10-14 м), преодолев силу электростатического отталкивания. Это возможно при большой кинетической энергии ядер. Для этого вещество должно иметь температуру 107 К. Поэтому реакция названа «термоядерной»(от лат. therme-тепло).

5 слайд

Описание слайда:

Неуправляемые термоядерные реакции На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез. По одной из гипотез в недрах Солнца происходит слияние 4 ядер водорода в ядро гелия. При этом выделяется колоссальное количество энергии 2. Водородная бомба. Фотография взрыва первой французской термоядерной бомбы Канопус, которая была испытана 24 августа 1968 года во Французской Полинезии.

6 слайд

Описание слайда:

Самой мощной из испытанных бомб была водородная бомба мощностью 57 мегатонн (57 миллионов тонн тротилового эквивалента), создана в СССР. Среди разработчиков были Сахаров, Харитонов и Адамский. Утром 30 октября 1961 года в 11:32 бомба, сброшенная с высоты 10 км, достигла высоты 4000 метров над Новой Землей (СССР) и была приведена в действие. Место взрыва напоминало ад – землю устилал толстый слой пепла от сгоревших скал. В радиусе 50 километров от эпицентра все горело, хотя перед взрывом здесь лежал снег высотой в человеческий рост, в 400 километрах в заброшенном поселке были разрушены деревянные дома.. Мощность взрыва в 10 раз превысила суммарную мощность всех взрывчатых веществ, использованных во второй мировой войне.

7 слайд

Описание слайда:

Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из соединения дейтерия с литием-6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода.

Описание слайда:

Основные направления исследований УТС Основная проблема – удержать газ при температуре 107 К (плазму) в замкнутом пространстве. На данный момент достаточно интенсивно финансируются две принципиальные схемы осуществления управляемого термоядерного синтеза. 1. Квазистационарные системы, в которых удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. 2. Импульсные системы. В таких системах УТС осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными или ионными импульсами. Такое облучение вызывает последовательность термоядерных микровзрывов.